Atmospheric constraints on the methane emissions from the East Siberian Shelf

被引:58
|
作者
Berchet, Antoine [1 ,8 ]
Bousquet, Philippe [1 ]
Pison, Isabelle [1 ]
Locatelli, Robin [1 ]
Chevallier, Frederic [1 ]
Paris, Jean-Daniel [1 ]
Dlugokencky, Ed J. [2 ]
Laurila, Tuomas [3 ]
Hatakka, Juha [3 ]
Viisanen, Yrjo [3 ]
Worthy, Doug E. J. [4 ]
Nisbet, Euan [5 ]
Fisher, Rebecca [5 ]
France, James [5 ]
Lowry, David [5 ]
Ivakhov, Viktor [6 ]
Hermansen, Ove [7 ]
机构
[1] CEA CNRS UVSQ, IPSL, Lab Sci Climat & Environm, Gif Sur Yvette, France
[2] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA
[3] Finnish Meteorol Inst, Climate & Global Change Res, FIN-00101 Helsinki, Finland
[4] Environm Canada, Toronto, ON, Canada
[5] Univ London, Dept Earth Sci, Royal Holloway, Egham, Surrey, England
[6] Voeikov Main Geophys Observ, St Petersburg, Russia
[7] NILU Norwegian Inst Air Res, Kjeller, Norway
[8] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Air Pollut Environm Technol, Dubendorf, Switzerland
关键词
CARBON; MODEL; DYNAMICS; GASES;
D O I
10.5194/acp-16-4147-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Subsea permafrost and hydrates in the East Siberian Arctic Shelf (ESAS) constitute a substantial carbon pool, and a potentially large source of methane to the atmosphere. Previous studies based on interpolated oceanographic campaigns estimated atmospheric emissions from this area at 8-17 TgCH(4) yr(-1). Here, we propose insights based on atmospheric observations to evaluate these estimates. The comparison of high-resolution simulations of atmospheric methane mole fractions to continuous methane observations during the whole year 2012 confirms the high variability and heterogeneity of the methane releases from ESAS. A reference scenario with ESAS emissions of 8 TgCH(4) yr(-1), in the lower part of previously estimated emissions, is found to largely overestimate atmospheric observations in winter, likely related to overestimated methane leakage through sea ice. In contrast, in summer, simulations are more consistent with observations. Based on a comprehensive statistical analysis of the observations and of the simulations, annual methane emissions from ESAS are estimated to range from 0.0 to 4.5 TgCH(4) yr(-1). Isotopic observations suggest a biogenic origin (either terrestrial or marine) of the methane in air masses originating from ESAS during late summer 2008 and 2009.
引用
收藏
页码:4147 / 4157
页数:11
相关论文
共 50 条
  • [41] Permafrost of the east Siberian Arctic shelf and coastal lowlands
    Romanovskii, NN
    Hubberten, HW
    Gavrilov, A
    Tumskoy, VE
    Kholodov, AL
    QUATERNARY SCIENCE REVIEWS, 2004, 23 (11-13) : 1359 - 1369
  • [42] Evaluation of methane emissions from West Siberian wetlands based on inverse modeling
    Kim, H-S
    Maksyutov, S.
    Glagolev, M. V.
    Machida, T.
    Patra, P. K.
    Sudo, K.
    Inoue, G.
    ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (03):
  • [43] Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change
    Bohn, T. J.
    Lettenmaier, D. P.
    Sathulur, K.
    Bowling, L. C.
    Podest, E.
    McDonald, K. C.
    Friborg, T.
    ENVIRONMENTAL RESEARCH LETTERS, 2007, 2 (04):
  • [44] Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra
    Liebner, Susanne
    Zeyer, Josef
    Wagner, Dirk
    Schubert, Carsten
    Pfeiffer, Eva-Maria
    Knoblauch, Christian
    JOURNAL OF ECOLOGY, 2011, 99 (04) : 914 - 922
  • [45] The great Siberian rivers as a source of methane on the Russian Arctic shelf
    Shakhova, N. E.
    Semiletov, I. P.
    Bel'cheva, N. N.
    DOKLADY EARTH SCIENCES, 2007, 415 (05) : 734 - 736
  • [46] Atmospheric dispersion of methane emissions from sugarcane burning in Mexico
    Flores-Jimenez, David E.
    Carbajal, Noel
    Algara-Siller, Marcos
    Aguilar-Rivera, Noe
    Alvarez-Fuentes, Gregorio
    Avila-Galarza, Alfredo
    Garcia, Agustin R.
    ENVIRONMENTAL POLLUTION, 2019, 250 : 922 - 933
  • [47] The great Siberian rivers as a source of methane on the Russian Arctic shelf
    N. E. Shakhova
    I. P. Semiletov
    N. N. Bel’cheva
    Doklady Earth Sciences, 2007, 415 : 734 - 736
  • [48] Atmospheric inverse estimates of methane emissions from Central California
    Zhao, Chuanfeng
    Andrews, Arlyn E.
    Bianco, Laura
    Eluszkiewicz, Janusz
    Hirsch, Adam
    MacDonald, Clinton
    Nehrkorn, Thomas
    Fischer, Marc L.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
  • [49] Practical constraints on atmospheric methane removal
    Lackner, Klaus S.
    NATURE SUSTAINABILITY, 2020, 3 (05) : 357 - 357
  • [50] Mineral composition of sediments from the Eastern Laptev Sea shelf and East Siberian Sea
    N. A. Nikolaeva
    A. N. Derkachev
    O. V. Dudarev
    Oceanology, 2013, 53 : 472 - 480