A Principal Component Analysis Based Microarray Data Bi-clustering Method

被引:0
|
作者
Zhang Yanpei [1 ]
Prinet, Veronique [2 ]
Wu Shuanhu [1 ]
机构
[1] Yantai Univ, Sch Comp Sci & Technol, Yantai, Peoples R China
[2] Natl Lab Pattern Recognit, Inst Automat, CAS, Beijing, Peoples R China
关键词
GENE-EXPRESSION DATA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarray data bi-clustering is very helpful for the research on gene regulatory mechanisms analysis. Genes exhibiting similar expression patterns provide useful clues for studying their possible functions. In this paper a novel bicluster detection method is proposed. Compared with the other approaches, biclusters are not detected directly with the whole given experiment data matrix, but are verified with the concatenation of small biclusters which are firstly detected using a conventional clustering method such as K-means and so on so is to making fully use of the rich and powerful existing data clustering methods. By this way, the affect of the high dimensionality of the data is greatly reduced. Since the data within a bicluster is highly correlated with each other, a principal component analysis based efficient verification method is applied to concatenate small biclusers into a larger one. Some experiment results on the simulated data are presented.
引用
收藏
页码:500 / +
页数:2
相关论文
共 50 条
  • [31] Bi-clustering of metabolic data using matrix factorization tools
    Gu, Quan
    Veselkov, Kirill
    METHODS, 2018, 151 : 12 - 20
  • [32] Bi-clustering continuous data with self-organizing map
    Khalid Benabdeslem
    Kais Allab
    Neural Computing and Applications, 2013, 22 : 1551 - 1562
  • [33] A general bi-clustering algorithm for object data with an application to the analysis of a Lombardy railway line
    Torti, Agostino
    Galvani, Marta
    Menafoglio, Alessandra
    Secchi, Piercesare
    Vantini, Simone
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 142 : 161 - 177
  • [34] Analyzing movement trajectories using a Markov bi-clustering method
    Keren Erez
    Jacob Goldberger
    Ronen Sosnik
    Moshe Shemesh
    Susan Rothstein
    Moshe Abeles
    Journal of Computational Neuroscience, 2009, 27 : 543 - 552
  • [35] Cancer classification based on microarray gene expression data using a principal component accumulation method
    JingJing Liu
    WenSheng Cai
    XueGuang Shao
    Science China Chemistry, 2011, 54 : 802 - 811
  • [36] Cancer classification based on microarray gene expression data using a principal component accumulation method
    LIU JingJingCAI WenSheng SHAO XueGuang Research Center for Analytical SciencesCollege of ChemistryNankai UniversityTianjin China
    Science China(Chemistry), 2011, 54 (05) : 802 - 811
  • [38] Cancer classification based on microarray gene expression data using a principal component accumulation method
    Liu JingJing
    Cai WenSheng
    Shao XueGuang
    SCIENCE CHINA-CHEMISTRY, 2011, 54 (05) : 802 - 811
  • [39] Nonparametric Bayesian Bi-Clustering for Next Generation Sequencing Count Data
    Xu, Yanxun
    Lee, Juhee
    Yuan, Yuan
    Mitra, Riten
    Liang, Shoudan
    Mueller, Peter
    Ji, Yuan
    BAYESIAN ANALYSIS, 2013, 8 (04): : 759 - 780
  • [40] Principal Component Analysis based Feature Selection for clustering
    Xu, Jun-Ling
    Xu, Bao-Wen
    Zhang, Wei-Feng
    Cui, Zi-Feng
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 460 - +