A note on the Laplacian Estrada index of trees

被引:0
|
作者
Deng, Hanyuan [1 ]
Zhang, Jie [2 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Laplacian Estrada index of a graph G is defined as LEE(G) = Sigma(n)(i=1) e(mu i), where mu(1) >= mu(2) >= ... >= mu(n-1) >= mu(n) = 0 are the eigenvalues of its Laplacian matrix. An unsolved problem in [19] is whether S(n)(3, n - 3) or C(n)(n - 5) has the third maximal Laplacian Estrada index among all trees on n vertices, where S(n)(3, n - 3) is the double tree formed by adding an edge between the centers of the stars S(3) and S(n-3) and C(n)(n - 5) is the tree formed by attaching n - 5 pendent vertices to the center of a path P(5). In this paper, we partially answer this problem, and prove that LEE(S(n)(3, n - 3)) > LEE(C(n)(n - 5)) and C(n)(n - 5) cannot have the third maximal Laplacian Estrada index among all trees on n vertices.
引用
收藏
页码:777 / 782
页数:6
相关论文
共 50 条
  • [31] A Lower Bound for Laplacian Estrada Index of a Graph
    Khosravanirad, Amir
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (01) : 175 - 180
  • [32] The signless Laplacian Estrada index of evolving graphs
    Zhu, Zhongxun
    Zou, Xin
    He, Fangguo
    ARS COMBINATORIA, 2019, 146 : 307 - 321
  • [33] Some Results on Laplacian Estrada Index of Graphs
    Chen, Xiaodan
    Hou, Yaoping
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 73 (01) : 149 - 162
  • [34] The Asymptotic Behavior of the Estrada Index for Trees
    Li, Xueliang
    Li, Yiyang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 97 - 106
  • [35] THE NORMALIZED SIGNLESS LAPLACIAN ESTRADA INDEX OF GRAPHS
    Altindag, S. B. Bozkurt
    Milovanovic, E.
    Matejic, M.
    Milovanovic, I.
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (03) : 131 - 142
  • [36] Characterizing graphs with maximal Laplacian Estrada index
    Li, Jianping
    Zhang, Jianbin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 465 : 312 - 324
  • [37] On the distance signless Laplacian Estrada index of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ramane, Harishchandra
    Li, Xueliang
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (04)
  • [38] On the signless Laplacian Estrada index of uniform hypergraphs
    Lu, Hongyan
    Xue, Nini
    Zhu, Zhongxun
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (08)
  • [39] A note lower bounds for the Estrada index
    Rodriguez, Jonnathan
    Aguayo, Juan L.
    Carmona, Juan R.
    Jahanbani, Akbar
    DISCRETE MATHEMATICS, 2021, 344 (04)
  • [40] Novel Bounds for the Normalized Laplacian Estrada Index and Normalized Laplacian Energy
    Clemente, Gian Paolo
    Cornaro, Alessandra
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (03) : 673 - 690