Forest Cover Classification Using Stacking of Ensemble Learning and Neural Networks

被引:2
|
作者
Patil, Pruthviraj R. [1 ]
Sivagami, M. [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Data mining; Forest covers; Stacking; Random forest; Extra trees; Multilayered perceptron; Boosting; Principle component analysis;
D O I
10.1007/978-981-15-0199-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deforestation is one of the major issues, that is, being affecting the environment for the long time and there are few effective measures have been taken to withstand it and to maintain the pristine of the nature. One of them is preserving the wilder forests. The main motive of the proposed work is to classify the forest dataset so that it helps the authorities in maintaining the forests and protecting them by controlled deforestation and re-growing. The proposed classification technique introduces the stacking approach of Ensemble learning which uses random forests, extra trees with boosting and multilayered perceptron techniques for forest cover classification. The proposed model is evaluated using dataset from the UCI library. The proposed stacking approach shows the improvement in the quality of forest covers classification results and is shown using ROC curve analysis.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 50 条
  • [21] Artificial neural network ensemble for land cover classification
    He, Lingmin
    Kong, Fansheng
    Shen, Zhangquan
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 623 - 623
  • [22] Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning
    Kumar, Mukesh
    Singhal, Saurabh
    Shekhar, Shashi
    Sharma, Bhisham
    Srivastava, Gautam
    SUSTAINABILITY, 2022, 14 (21)
  • [23] Workout Classification Using a Convolutional Neural Network in Ensemble Learning
    Bang, Gi-Seung
    Park, Seung-Bo
    SENSORS, 2024, 24 (10)
  • [24] TEXTURE-BASED FOREST COVER CLASSIFICATION USING RANDOM FORESTS AND ENSEMBLE MARGIN
    Boukir, S.
    Regniers, O.
    Guo, L.
    Bombrun, L.
    Germain, C.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3072 - 3075
  • [25] Forest Management Type Identification Based on Stacking Ensemble Learning
    Liu, Jiang
    Chen, Jingmin
    Chen, Shaozhi
    Wu, Keyi
    FORESTS, 2024, 15 (05):
  • [26] Rhabdomyosarcoma Histology Classification using Ensemble of Deep Learning Networks
    Agarwal, Saloni
    Abaker, Mohamedelfatih Eltigani Osman
    Zhang, Xinyi
    Daescu, Ovidiu
    Barkauskas, Donald A.
    Rudzinski, Erin R.
    Leavey, Patrick
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [27] Remote sensing based forest cover classification using machine learning
    Aziz, Gouhar
    Minallah, Nasru
    Saeed, Aamir
    Frnda, Jaroslav
    Khan, Waleed
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [28] Remote sensing based forest cover classification using machine learning
    Gouhar Aziz
    Nasru Minallah
    Aamir Saeed
    Jaroslav Frnda
    Waleed Khan
    Scientific Reports, 14
  • [29] Alzheimer's Disease Detection and Classification using Transfer Learning Technique and Ensemble on Convolutional Neural Networks
    Sadat, Sayed Us
    Shomee, Homaira Huda
    Awwal, Alvina
    Amin, Sadia Nur
    Reza, Md Tanzim
    Parvez, Mohammad Zavid
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 1478 - 1481
  • [30] Classification of Alzheimer's Disease Using Ensemble of Deep Neural Networks Trained Through Transfer Learning
    Tanveer, M.
    Rashid, A. H.
    Ganaie, M. A.
    Reza, M.
    Razzak, Imran
    Hua, Kai-Lung
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) : 1453 - 1463