Forest Cover Classification Using Stacking of Ensemble Learning and Neural Networks

被引:2
|
作者
Patil, Pruthviraj R. [1 ]
Sivagami, M. [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Data mining; Forest covers; Stacking; Random forest; Extra trees; Multilayered perceptron; Boosting; Principle component analysis;
D O I
10.1007/978-981-15-0199-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deforestation is one of the major issues, that is, being affecting the environment for the long time and there are few effective measures have been taken to withstand it and to maintain the pristine of the nature. One of them is preserving the wilder forests. The main motive of the proposed work is to classify the forest dataset so that it helps the authorities in maintaining the forests and protecting them by controlled deforestation and re-growing. The proposed classification technique introduces the stacking approach of Ensemble learning which uses random forests, extra trees with boosting and multilayered perceptron techniques for forest cover classification. The proposed model is evaluated using dataset from the UCI library. The proposed stacking approach shows the improvement in the quality of forest covers classification results and is shown using ROC curve analysis.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 50 条
  • [1] Enhancing Forest Cover Type Classification through Deep Learning Neural Networks
    Baldovino, Renann G.
    Tolentino, Aldrin Joshua C.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 277 - 280
  • [2] Improving wetland cover classification using artificial neural networks with ensemble techniques
    Hu, Xudong
    Zhang, Penglin
    Zhang, Qi
    Wang, Junqiang
    GISCIENCE & REMOTE SENSING, 2021, 58 (04) : 603 - 623
  • [3] Improving Foraminifera Classification Using Convolutional Neural Networks with Ensemble Learning
    Nanni, Loris
    Faldani, Giovanni
    Brahnam, Sheryl
    Bravin, Riccardo
    Feltrin, Elia
    SIGNALS, 2023, 4 (03): : 524 - 538
  • [4] Classification of Sleeping Position Using Enhanced Stacking Ensemble Learning
    Xu, Xi
    Mo, Qihui
    Wang, Zhibing
    Zhao, Yonghan
    Li, Changyun
    ENTROPY, 2024, 26 (10)
  • [5] Detection of fake face images using lightweight convolutional neural networks with stacking ensemble learning method
    Şafak E.
    Barışçı N.
    PeerJ Computer Science, 2024, 10
  • [6] Detection of fake face images using lightweight convolutional neural networks with stacking ensemble learning method
    Safak, Emre
    Barisci, Necaattin
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [7] Classification of Pulmonary Diseases Using a Deep Learning Stacking Ensemble Model
    Sadoon, Ruaa N.
    Chaid, Adala M.
    Informatica (Slovenia), 2024, 48 (14): : 43 - 64
  • [8] An Ensemble Transfer Learning Model for Brain Tumors Classification using Convolutional Neural Networks
    Sterniczuk, Bartosz
    Charytanowicz, Malgorzata
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2024, 18 (08) : 204 - 216
  • [9] Land cover classification from MODIS satellite data using probabilistically optimal ensemble of artificial neural networks
    Mackin, Kenneth J.
    Nunohiro, Eiji
    Ohshiro, Masanori
    Yamasaki, Kazuko
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2006, 4253 : 820 - 826