Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts

被引:74
|
作者
Gao, Zhe [1 ,2 ]
Wang, Guofu [1 ,2 ]
Lei, Tingyu [1 ]
Lv, Zhengxing [3 ]
Xiong, Mi [1 ,2 ]
Wang, Liancheng [1 ,2 ]
Xing, Shuangfeng [1 ,2 ]
Ma, Jingyuan [3 ]
Jiang, Zheng [3 ]
Qin, Yong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROLYTIC DEHYDROGENATION; AMMONIA-BORANE; FORMIC-ACID; DESIGN; NANOPARTICLES; DURABILITY; EFFICIENCY; CLUSTERS; STORAGE; METALS;
D O I
10.1038/s41467-021-27785-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The contribution of the reverse spillover effect to hydrogen generation reactions is still controversial. Herein, the promotion functions for reverse spillover in the ammonia borane hydrolysis reaction are proven by constructing a spatially separated NiO/Al2O3/Pt bicomponent catalyst via atomic layer deposition and performing in situ quick X-ray absorption near-edge structure (XANES) characterization. For the NiO/Al2O3/Pt catalyst, NiO and Pt nanoparticles are attached to the outer and inner surfaces of Al2O3 nanotubes, respectively. In situ XANES results reveal that for ammonia borane hydrolysis, the H species generated at NiO sites spill across the support to the Pt sites reversely. The reverse spillover effects account for enhanced H2 generation rates for NiO/Al2O3/Pt. For the CoOx/Al2O3/Pt and NiO/TiO2/Pt catalysts, reverse spillover effects are also confirmed. We believe that an indepth understanding of the reverse effects will be helpful to clarify the catalytic mechanisms and provide a guide for designing highly efficient catalysts for hydrogen generation reactions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity
    Mi Xiong
    Zhe Gao
    Peng Zhao
    Guofu Wang
    Wenjun Yan
    Shuangfeng Xing
    Pengfei Wang
    Jingyuan Ma
    Zheng Jiang
    Xingchen Liu
    Jiping Ma
    Jie Xu
    Yong Qin
    Nature Communications, 11
  • [22] Electrocatalytic hydrogenation of furfural over copper nitride with enhanced hydrogen spillover performance
    Wen, Huiming
    Li, Tianchun
    Fan, Ziyi
    Jing, Yu
    Zhang, Wenjun
    Chen, Zupeng
    GREEN CHEMISTRY, 2024, 26 (15) : 8861 - 8871
  • [23] CHEMISORPTION AND HYDROGEN SPILLOVER ON FRAMEWORK RUTHENIUM CATALYSTS
    DMITRIEV, RV
    ZUBAREVA, ND
    VEDENYAPIN, AA
    KLABUNOVSKII, EI
    MINACHEV, KM
    BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR DIVISION OF CHEMICAL SCIENCE, 1988, 37 (08): : 1523 - 1526
  • [24] Hydrogen spillover on cerium-based catalysts
    K. V. Vikanova
    E. A. Redina
    L. M. Kustov
    Russian Chemical Bulletin, 2022, 71 : 1579 - 1592
  • [25] SPILLOVER HYDROGEN EFFECT ON AMORPHOUS HYDROCRACKING CATALYSTS
    STUMBO, AM
    GRANGE, P
    DELMON, B
    CATALYSIS LETTERS, 1995, 31 (2-3) : 173 - 182
  • [26] Hydrogen spillover on cerium-based catalysts
    Vikanova, K. V.
    Redina, E. A.
    Kustov, L. M.
    RUSSIAN CHEMICAL BULLETIN, 2022, 71 (08) : 1579 - 1592
  • [27] Effect of spillover hydrogen on amorphous hydrocracking catalysts
    Stumbo, AM
    Grange, P
    Delmon, B
    11TH INTERNATIONAL CONGRESS ON CATALYSIS - 40TH ANNIVERSARY, PTS A AND B, 1996, 101 : 97 - 106
  • [28] Ethanol steam reforming for hydrogen generation over structured catalysts
    Lopez, Eduardo
    Divins, Nuria J.
    Anzola, Andres
    Schbib, Susana
    Borio, Daniel
    Llorca, Jordi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (11) : 4418 - 4428
  • [29] HYDROGEN GENERATION BY STEAM REFORMATION OF HEXANE OVER ZEOLITE CATALYSTS
    BROOKS, CS
    ADVANCES IN CHEMISTRY SERIES, 1971, (102): : 426 - &
  • [30] Combined methanol reforming for hydrogen generation over monolithic catalysts
    Lindström, B
    Agrell, J
    Pettersson, LJ
    CHEMICAL ENGINEERING JOURNAL, 2003, 93 (01) : 91 - 101