High-throughput analysis of contact angle goniometry data using DropPy

被引:4
|
作者
Orella, Michael Julian [1 ]
Leonard, McLain Evan [1 ]
Roman-Leshkov, Yuriy [1 ]
Brushett, Fikile Richard [1 ]
机构
[1] MIT, Dept Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02141 USA
基金
美国国家科学基金会;
关键词
Contact angle goniometry; High-throughput image analysis; Automatic edge detection; SURFACE-TENSION; WATER MANAGEMENT; WETTABILITY; PENDANT; !text type='PYTHON']PYTHON[!/text; LAYERS;
D O I
10.1016/j.softx.2021.100665
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
At present, surface wettability measurements are an underutilized segment of the characterization toolkit, in part due to the redundancy inherent in manual analysis. Even so, there have been numerous advances in contact angle data collection and analysis methods. The emergence of inexpensive and powerful hardware in increasingly small form-factors and the development of robust and versatile software packages would enable interrogation of wetting phenomena across a range of platforms. Here, we introduce DropPy, an open-source Python implementation of the classic axisymmetric drop shape analysis technique to fit droplet profiles from images while providing an easy interface through which casual users may interpret their findings. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] High-Throughput Data Processing at FRIB Using ESnet
    Chester, Aaron
    Cerizza, Giordano
    Crawford, Heather L.
    Fox, Ron
    Liddick, Sean N.
    Lubna, Rebeka S.
    Reece, Paul
    Rockwell, Tom
    Vasquez, Jerry
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2025, 72 (03) : 506 - 509
  • [22] The Application of Cheminformatics in the Analysis of High-Throughput Screening Data
    Walters, W. Patrick
    Aronov, Alexander
    Goldman, Brian
    McClain, Brian
    Perola, Emanuele
    Weiss, Jonathan
    FRONTIERS IN MOLECULAR DESIGN AND CHEMIAL INFORMATION SCIENCE - HERMAN SKOLNIK AWARD SYMPOSIUM 2015: JURGEN BAJORATH, 2016, 1222 : 269 - 282
  • [23] High-throughput metaproteomics data analysis with Unipept: A tutorial
    Mesuere, Bart
    Van der Jeugt, Felix
    Willems, Toon
    Naessens, Tom
    Devreese, Bart
    Martens, Lennart
    Dawyndt, Peter
    JOURNAL OF PROTEOMICS, 2018, 171 : 11 - 22
  • [24] Need for speed in high-throughput sequencing data analysis
    Pluss, M.
    Caspar, S. M.
    Meienberg, J.
    Kopps, A. M.
    Keller, I.
    Bruggmann, R.
    Vogel, M.
    Matyas, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 721 - 722
  • [25] Feature cluster selection for high-throughput data analysis
    Yu, Lei
    Li, Hao
    2007 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2007, : 9 - 14
  • [26] Computational Methods for Analysis of High-Throughput Screening Data
    Balakin, Konstantin V.
    Savchuk, Nikolay P.
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2006, 2 (01) : 1 - 19
  • [27] Sparse Canonical Covariance Analysis for High-throughput Data
    Lee, Woojoo
    Lee, Donghwan
    Lee, Youngjo
    Pawitan, Yudi
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
  • [28] Statistical practice in high-throughput screening data analysis
    Malo, N
    Hanley, JA
    Cerquozzi, S
    Pelletier, J
    Nadon, R
    NATURE BIOTECHNOLOGY, 2006, 24 (02) : 167 - 175
  • [29] Feature cluster selection for high-throughput data analysis
    Yu, Lei
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2009, 3 (02) : 177 - 191
  • [30] Statistical practice in high-throughput screening data analysis
    Nathalie Malo
    James A Hanley
    Sonia Cerquozzi
    Jerry Pelletier
    Robert Nadon
    Nature Biotechnology, 2006, 24 : 167 - 175