Numerical Study of Dynamic Properties of Fractional Viscoplasticity Model

被引:9
|
作者
Szymczyk, Michal [1 ]
Nowak, Marcin [2 ]
Sumelka, Wojciech [1 ]
机构
[1] Poznan Univ Tech, Inst Struct Engn, Piotrowo 5 st, PL-60965 Poznan, Poland
[2] Polish Acad Sci, Inst Fundamental Technol Res, Pawinskiego 5B St, PL-02106 Warsaw, Poland
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 07期
关键词
fractional viscoplasticity; rate dependence; plastic anisotropy; non-normality; directional viscosity; explicit/implicit non-locality; PLASTIC-FLOW; POROUS-MEDIUM; DEFORMATION; MECHANICS; BEHAVIOR; FLUID;
D O I
10.3390/sym10070282
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fractional viscoplasticity (FV) concept combines the Perzyna type viscoplastic model and fractional calculus. This formulation includes: (i) rate-dependence; (ii) plastic anisotropy; (iii) non-normality; (iv) directional viscosity; (v) implicit/time non-locality; and (vi) explicit/stress-fractional non-locality. This paper presents a comprehensive analysis of the above mentioned FV properties, together with a detailed discussion on a general 3D numerical implementation for the explicit time integration scheme.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Numerical study on dynamic infrared properties of high temperature jetflow using narrow-band model
    Wang, Yan-Ming
    Dong, Shi-Kui
    Tan, He-Ping
    Shuai, Yong
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2010, 42 (11): : 1771 - 1774
  • [42] A VISCOPLASTICITY MODEL FOR SOLDER ALLOYS
    Lee, Yongchang
    Basaran, Cemal
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 4, 2012, : 321 - 328
  • [43] Numerical simulation of cyclic behavior of ductile metals with a coupled damage-viscoplasticity model
    Khoei, A. R.
    Eghbalian, M.
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 55 : 376 - 389
  • [44] Numerical algorithm for dynamic problems involving fractional operators
    Zhang, W
    Shimizu, N
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 1998, 41 (03): : 364 - 370
  • [45] A numerical scheme for dynamic systems containing fractional derivatives
    Yuan, LX
    Agrawal, OP
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 321 - 324
  • [46] Numerical Simulation of Dynamic Stability of Fractional Stochastic Systems
    Deng, Jian
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2018, 18 (10)
  • [47] Numerical approximations of a dynamic system containing fractional derivatives
    Momani, Shaher
    Jaradat, Omar K.
    Ibrahim, Rabha
    Journal of Applied Sciences, 2008, 8 (06) : 1079 - 1084
  • [48] AN INTERNAL VARIABLE MODEL OF VISCOPLASTICITY
    BAMMANN, DJ
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1984, 22 (8-10) : 1041 - 1053
  • [49] Dynamic of Logistic Model at Fractional order
    Suansook, Yoothana
    Paithoonwattanakij, Kitti
    ISIE: 2009 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2009, : 713 - 718
  • [50] A study of nonlinear fractional-order biochemical reaction model and numerical simulations
    Radhakrishnan, Bheeman
    Chandru, Paramasivam
    Nieto, Juan J.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (03): : 588 - 605