Image Super-Resolution via Dual-Level Recurrent Residual Networks

被引:4
|
作者
Tan, Congming [1 ]
Wang, Liejun [1 ]
Cheng, Shuli [1 ,2 ]
机构
[1] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
美国国家科学基金会;
关键词
super-resolution; dual-level; satisfactory vision;
D O I
10.3390/s22083058
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, the feedforward architecture of a super-resolution network based on deep learning was proposed to learn the representation of a low-resolution (LR) input and the non-linear mapping from these inputs to a high-resolution (HR) output, but this method cannot completely solve the interdependence between LR and HR images. In this paper, we retain the feedforward architecture and introduce residuals to a dual-level; therefore, we propose the dual-level recurrent residual network (DLRRN) to generate an HR image with rich details and satisfactory vision. Compared with feedforward networks that operate at a fixed spatial resolution, the dual-level recurrent residual block (DLRRB) in DLRRN utilizes both LR and HR space information. The circular signals in DLRRB enhance spatial details by the mutual guidance between two directions (LR to HR and HR to LR). Specifically, the LR information of the current layer is generated by the HR and LR information of the previous layer. Then, the HR information of the previous layer and LR information of the current layer jointly generate the HR information of the current layer, and so on. The proposed DLRRN has a strong ability for early reconstruction and can gradually restore the final high-resolution image. An extensive quantitative and qualitative evaluation of the benchmark dataset was carried out, and the experimental results proved that our network achieved good results in terms of network parameters, visual effects and objective performance metrics.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Joint Back Projection and Residual Networks for Efficient Image Super-Resolution
    Liu, Zhi-Song
    Siu, Wan-Chi
    Chan, Yui-Lam
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 1054 - 1060
  • [32] A Dual CNN for Image Super-Resolution
    Song, Jiagang
    Xiao, Jingyu
    Tian, Chunwei
    Hu, Yuxuan
    You, Lei
    Zhang, Shichao
    ELECTRONICS, 2022, 11 (05)
  • [33] Super-resolution reconstruction of medical image via depth residual network
    Ding, Jinrong
    Shu, Yefeng
    Sun, Jiasong
    Zuo, Chao
    Chen, Qian
    ADVANCED OPTICAL IMAGING TECHNOLOGIES V, 2023, 12316
  • [34] Deep recurrent residual channel attention network for single image super-resolution
    Liu, Yepeng
    Yang, Dezhi
    Zhang, Fan
    Xie, Qingsong
    Zhang, Caiming
    VISUAL COMPUTER, 2024, 40 (05): : 3441 - 3456
  • [35] Deep recurrent residual channel attention network for single image super-resolution
    Yepeng Liu
    Dezhi Yang
    Fan Zhang
    Qingsong Xie
    Caiming Zhang
    The Visual Computer, 2024, 40 : 3441 - 3456
  • [36] IMAGE SUPER-RESOLUTION VIA DEEP DILATED CONVOLUTIONAL NETWORKS
    Huang, Zehao
    Wang, Lingfeng
    Meng, Gaofeng
    Pan, Chunhong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 953 - 957
  • [37] Video super-resolution based on spatial-temporal recurrent residual networks
    Yang, Wenhan
    Feng, Jiashi
    Xie, Guosen
    Liu, Jiaying
    Guo, Zongming
    Yan, Shuicheng
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 168 : 79 - 92
  • [38] Efficient Video Super-Resolution via Hierarchical Temporal Residual Networks
    Liu, Zhi-Song
    Siu, Wan-Chi
    Chan, Yui-Lam
    IEEE ACCESS, 2021, 9 : 106049 - 106064
  • [39] Residual Dense Network for Image Super-Resolution
    Zhang, Yulun
    Tian, Yapeng
    Kong, Yu
    Zhong, Bineng
    Fu, Yun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2472 - 2481
  • [40] Dual Reconstruction with Densely Connected Residual Network for Single Image Super-Resolution
    Hsu, Chih-Chung
    Lin, Chia-Hsiang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3643 - 3650