Image Super-Resolution via Dual-Level Recurrent Residual Networks

被引:4
|
作者
Tan, Congming [1 ]
Wang, Liejun [1 ]
Cheng, Shuli [1 ,2 ]
机构
[1] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
美国国家科学基金会;
关键词
super-resolution; dual-level; satisfactory vision;
D O I
10.3390/s22083058
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, the feedforward architecture of a super-resolution network based on deep learning was proposed to learn the representation of a low-resolution (LR) input and the non-linear mapping from these inputs to a high-resolution (HR) output, but this method cannot completely solve the interdependence between LR and HR images. In this paper, we retain the feedforward architecture and introduce residuals to a dual-level; therefore, we propose the dual-level recurrent residual network (DLRRN) to generate an HR image with rich details and satisfactory vision. Compared with feedforward networks that operate at a fixed spatial resolution, the dual-level recurrent residual block (DLRRB) in DLRRN utilizes both LR and HR space information. The circular signals in DLRRB enhance spatial details by the mutual guidance between two directions (LR to HR and HR to LR). Specifically, the LR information of the current layer is generated by the HR and LR information of the previous layer. Then, the HR information of the previous layer and LR information of the current layer jointly generate the HR information of the current layer, and so on. The proposed DLRRN has a strong ability for early reconstruction and can gradually restore the final high-resolution image. An extensive quantitative and qualitative evaluation of the benchmark dataset was carried out, and the experimental results proved that our network achieved good results in terms of network parameters, visual effects and objective performance metrics.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Image Super-Resolution via Dual-State Recurrent Networks
    Han, Wei
    Chang, Shiyu
    Liu, Ding
    Yu, Mo
    Witbrock, Michael
    Huang, Thomas S.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1654 - 1663
  • [2] Image Super-resolution via Residual Block Attention Networks
    Dai, Tao
    Zha, Hua
    Jiang, Yong
    Xia, Shu-Tao
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3879 - 3886
  • [3] Deep Residual Networks of Residual Networks for Image Super-Resolution
    Wei, Xueqi
    Yang, Fumeng
    Wu, Congzhong
    LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017, 2017, 10605
  • [4] Progressive residual networks for image super-resolution
    Jin Wan
    Hui Yin
    Ai-Xin Chong
    Zhi-Hao Liu
    Applied Intelligence, 2020, 50 : 1620 - 1632
  • [5] Progressive residual networks for image super-resolution
    Wan, Jin
    Yin, Hui
    Chong, Ai-Xin
    Liu, Zhi-Hao
    APPLIED INTELLIGENCE, 2020, 50 (05) : 1620 - 1632
  • [6] SINGLE IMAGE SUPER-RESOLUTION VIA RESIDUAL NEURON ATTENTION NETWORKS
    Ai, Wenjie
    Tu, Xiaoguang
    Cheng, Shilei
    Xie, Mei
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1586 - 1590
  • [7] Fast Single Image Super-Resolution via Dilated Residual Networks
    Zhang Lu
    Zhang Yu
    Peng Yali
    Liu Shigang
    Wu Xiaojun
    Lu Gang
    Rao Yuan
    IEEE ACCESS, 2019, 7 : 109729 - 109738
  • [8] RECOVER THE RESIDUAL OF RESIDUAL: RECURRENT RESIDUAL REFINEMENT NETWORK FOR IMAGE SUPER-RESOLUTION
    Gao, Tianxiao
    Xiong, Ruiqin
    Zhao, Rui
    Zhang, Jian
    Zhu, Shuyuan
    Huang, Tiejun
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1804 - 1808
  • [9] Residual Networks for Light Field Image Super-Resolution
    Zhang, Shuo
    Lin, Youfang
    Sheng, Hao
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11038 - 11047
  • [10] Image Super-resolution Based on Recursive Residual Networks
    Zhou D.-W.
    Zhao L.-J.
    Duan R.
    Chai X.-L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (06): : 1157 - 1165