High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction

被引:160
|
作者
Fukui, Kosuke [1 ]
Tomita, Akihisa [1 ]
Okamoto, Atsushi [1 ]
Fujii, Keisuke [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, Kita14,Nishi9, Sapporo, Hokkaido 0600814, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan
来源
PHYSICAL REVIEW X | 2018年 / 8卷 / 02期
关键词
ACCURACY THRESHOLD; ALGORITHMS; COMPUTER; MEMORY;
D O I
10.1103/PhysRevX.8.021054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Fault-tolerant linear optics quantum computation by error-detecting quantum state transfer
    Cho, Jaeyoon
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [42] Leveraging Automorphisms of Quantum Codes for Fault-Tolerant Quantum Computation
    Grassl, Markus
    Roetteler, Martin
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 534 - +
  • [43] Beyond Single-Shot Fault-Tolerant Quantum Error Correction
    Delfosse, Nicolas
    Reichardt, Ben W.
    Svore, Krysta M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 287 - 301
  • [44] Fault-Tolerant Quantum Error Correction for non-Abelian Anyons
    Guillaume Dauphinais
    David Poulin
    Communications in Mathematical Physics, 2017, 355 : 519 - 560
  • [45] Crosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions
    Parrado-Rodriguez, Pedro
    Ryan-Anderson, Ciaran
    Bermudez, Alejandro
    Mueller, Markus
    QUANTUM, 2021, 5 : 1 - 30
  • [46] Realization of Real-Time Fault-Tolerant Quantum Error Correction
    Ryan-Anderson, C.
    Bohnet, J. G.
    Lee, K.
    Gresh, D.
    Hankin, A.
    Gaebler, J. P.
    Francois, D.
    Chernoguzov, A.
    Lucchetti, D.
    Brown, N. C.
    Gatterman, T. M.
    Halit, S. K.
    Gilmore, K.
    Gerber, J. A.
    Neyenhuis, B.
    Hayes, D.
    Stutz, R. P.
    PHYSICAL REVIEW X, 2021, 11 (04)
  • [47] Fault-tolerant Quantum Error Correction Using a Linear Array of Emitters
    Kim, Jintae
    Han, Jung Hoon
    Kim, Isaac H.
    QUANTUM, 2025, 9
  • [48] Active Fault-Tolerant Quantum Error Correction: The Curse of the Open System
    Hagar, Amit
    PHILOSOPHY OF SCIENCE, 2009, 76 (04) : 506 - 535
  • [49] New limits on fault-tolerant quantum computation
    Buhrman, Harry
    Cleve, Richard
    Laurent, Monique
    Linden, Noah
    Schrijver, Alexander
    Unger, Falk
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 411 - 419
  • [50] Fibonacci scheme for fault-tolerant quantum computation
    Aliferis, Panos
    Preskill, John
    PHYSICAL REVIEW A, 2009, 79 (01):