Three-dimensional study of the pressure field and advantages of hemispherical crucible in silicon Czochralski crystal growth

被引:8
|
作者
Mokhtari, F. [1 ,2 ]
Bouabdallah, A. [1 ]
Merah, A. [3 ]
Zizi, M. [1 ]
Hanchi, S. [4 ]
Alemany, A. [5 ]
机构
[1] Univ Sci & Technol, LTSE Lab, Algiers, Algeria
[2] Univ Mouloud Mammeri, Tizi Ouzou, Algeria
[3] Univ Mhammed Bougara, Boumerdes, Algeria
[4] UER Mecan, Algiers, Algeria
[5] CNRS, Lab EPM, Grenoble, France
关键词
crystal growth; Czochralski; silicon; modified geometry; pressure field; Fluent software; MAGNETIC-FIELDS; MELT FLOW; SIMULATION; CONVECTION; TRANSPORT;
D O I
10.1002/crat.201000033
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The effects of several growth parameters in cylindrical and spherical Czochralski crystal process are studied numerically and particularly, we focus on the influence of the pressure field. We present a set of three-dimensional computational simulations using the finite volume package Fluent in two different geometries, a new geometry as cylindro-spherical and the traditional configuration as cylindro-cylindrical. We found that the evolution of pressure which is has not been studied before; this important function is strongly related to the vorticity in the bulk flow, the free surface and the growth interface. It seems that the pressure is more sensitive to the breaking of symmetry than the other properties that characterize the crystal growth as temperature or velocity fields. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:573 / 582
页数:10
相关论文
共 50 条
  • [21] Effect of controlled crucible movement on melting process and carbon contamination in Czochralski silicon crystal growth
    Liu, Xin
    Han, Xue-Feng
    Nakano, Satoshi
    Kakimoto, Koichi
    JOURNAL OF CRYSTAL GROWTH, 2018, 483 : 241 - 244
  • [22] Two- and three-dimensional transient melt-flow simulation in vapour-pressure-controlled Czochralski crystal growth
    Baensch, E.
    Davis, D.
    Langmach, H.
    Reinhardt, G.
    Uhle, M.
    COMPUTERS & FLUIDS, 2006, 35 (10) : 1400 - 1419
  • [23] Three-dimensional stability calculations for hydrodynamic model of Czochralski growth
    Gelfgat, A. Yu
    JOURNAL OF CRYSTAL GROWTH, 2007, 303 (01) : 226 - 230
  • [24] CZOCHRALSKI SILICON CRYSTAL GROWTH IN NITROGEN ATMOSPHERE UNDER REDUCED PRESSURE
    阙端麟
    李立本
    陈修治
    林玉瓶
    张锦心
    周晓
    杨建松
    ScienceinChina,SerA., 1991, Ser.A.1991 (08) : 1017 - 1024
  • [25] Effects of a cusp magnetic field on the oscillatory convection coupled with crucible rotation in Czochralski crystal growth
    Lee, YS
    Chun, CH
    JOURNAL OF CRYSTAL GROWTH, 1999, 197 (1-2) : 307 - 316
  • [26] Effects of axial magnetic field on the oscillatory convection coupled with crucible rotation in Czochralski crystal growth
    Lee, YS
    Chun, CH
    GRAVITATIONAL EFFECTS IN MATERIALS AND FLUID SCIENCES, 1999, 24 (10): : 1375 - 1378
  • [27] Effects of axial magnetic field on the oscillatory convection coupled with crucible rotation in Czochralski crystal growth
    Lee, Y.-S.
    Chun, Ch.-H.
    Advances in Space Research, 24 (10): : 1375 - 1378
  • [28] CZOCHRALSKI SILICON CRYSTAL GROWTH IN NITROGEN ATMOSPHERE UNDER REDUCED PRESSURE
    阙端麟
    李立本
    陈修治
    林玉瓶
    张锦心
    周晓
    杨建松
    Science China Mathematics, 1991, (08) : 1017 - 1024
  • [29] A three-dimensional phase field model coupled with a lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field
    Lin, Guang
    Bao, Jie
    Xu, Zhijie
    COMPUTERS & FLUIDS, 2014, 103 : 204 - 214
  • [30] Fully three dimensional numerical analysis of industrial scale silicon Czochralski growth with a transverse magnetic field
    Yokoyama, R.
    Nakamura, T.
    Fujiwara, T.
    Hamaogi, K.
    Takatani, K.
    JOURNAL OF CRYSTAL GROWTH, 2017, 468 : 905 - 908