Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory

被引:294
|
作者
Gaiotto, Davide [1 ]
Moore, Gregory W. [2 ,3 ]
Neitzke, Andrew [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[2] Rutgers State Univ, NHETC, Piscataway, NJ 08855 USA
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
关键词
HYPERKAHLER METRICS; MODULI SPACE; DUALITY; STABILITY; GEOMETRY;
D O I
10.1007/s00220-010-1071-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a physical explanation of the Kontsevich-Soibelman wall-crossing formula for the BPS spectrum in Seiberg-Witten theories. In the process we give an exact description of the BPS instanton corrections to the hyperkahler metric of the moduli space of the theory on R-3 x S-1. The wall-crossing formula reduces to the statement that this metric is continuous. Our construction of the metric uses a four-dimensional analogue of the two-dimensional tt* equations.
引用
收藏
页码:163 / 224
页数:62
相关论文
共 50 条