Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws

被引:31
|
作者
Dedner, Andreas
Makridakis, Charalambos
Ohlberger, Mario
机构
[1] Univ Freiburg, Abt Angew Math, D-79104 Freiburg, Germany
[2] Univ Crete, Dept Appl Math, GR-71409 Iraklion, Greece
关键词
discontinuous Galerkin; higher order; adaptive methods; error estimate; finite element;
D O I
10.1137/050624248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an a posteriori error estimate for the Runge-Kutta discontinuous Galerkin method (RK-DG) of arbitrary order in arbitrary space dimensions. For stabilization of the scheme a general framework of projections is introduced. Finally it is demonstrated numerically how the a posteriori error estimate is used to design both an efficient grid adaption and gradient limiting strategy. Numerical experiments show the stability of the scheme and the gain in efficiency in comparison with computations on uniform grids.
引用
收藏
页码:514 / 538
页数:25
相关论文
共 50 条