Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method

被引:23
|
作者
Fang, Y. [1 ]
Jayasuriya, D. [1 ]
Furniss, D. [1 ]
Tang, Z. Q. [1 ]
Sojka, L. [1 ,2 ]
Markos, C. [1 ,3 ]
Sujecki, S. [1 ,2 ]
Seddon, A. B. [1 ]
Benson, T. M. [1 ]
机构
[1] Univ Nottingham, Midinfrared Photon Grp, George Green Inst Electromagnet Res, Fac Engn, Univ Pk, Nottingham NG7 2RD, England
[2] Wroclaw Univ Technol, Inst Telecommun Teleinformat & Acoust, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[3] Tech Univ Denmark, Dept Photon Engn, DTU Fotonik, Orsteds Plads 343, DK-2800 Lyngby, Denmark
基金
英国工程与自然科学研究理事会;
关键词
Chalcogenide glasses; Refractive index; Dispersion; OPTICAL-PROPERTIES; GLASSES; FIBER; FABRICATION; CONSTANTS;
D O I
10.1007/s11082-017-1057-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The well-known method presented by Swanepoel can be used to determine the refractive index dispersion of thin films in the near-infrared region from wavelength values at maxima and minima, only, of the transmission interference fringes. In order to extend this method into the mid-infrared spectral region (our measurements are over the wavelength range from 2 to 25 mu m), the method is improved by using a two-term Sellmeier model instead of the Cauchy model as the dispersive equation. Chalcogenide thin films of nominal batch composition As40Se60 (at.%) and Ge16As24Se15.5Te44.5 (at.%) are prepared by a hot-pressing technique. The refractive index dispersion of the chalcogenide thin films is determined by the improved method with a standard deviation of less than 0.0027. The accuracy of the method is shown to be better than 0.4% at a wavelength of 3.1 mu m by comparison with a benchmark refractive index value obtained from prism measurements on Ge16As24Se15.5Te44.5 material taken from the same batch.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method
    Y. Fang
    D. Jayasuriya
    D. Furniss
    Z. Q. Tang
    Ł. Sojka
    C. Markos
    S. Sujecki
    A. B. Seddon
    T. M. Benson
    Optical and Quantum Electronics, 2017, 49
  • [2] Extension of the Swanepoel method for obtaining the refractive index of chalcogenide thin films accurately at an arbitrary wavenumber
    Jin, Youliang
    Song, Baoan
    Lin, Changgui
    Zhang, Peiqing
    Dai, Shixun
    Xu, TieFeng
    Nie, Qiuhua
    OPTICS EXPRESS, 2017, 25 (25): : 31273 - 31280
  • [3] INTERFEROMETRIC METHOD FOR DETERMINING REFRACTIVE INDEX AND THICKNESS OF THIN FILMS
    ISRAELAC.J
    NATURE-PHYSICAL SCIENCE, 1971, 229 (03): : 85 - &
  • [4] Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films
    Jin, Youliang
    Song, Baoan
    Jia, Zhitai
    Zhang, Yinan
    Lin, Changgui
    Wang, Xunsi
    Dai, Shixun
    OPTICS EXPRESS, 2017, 25 (01): : 440 - 451
  • [5] NEW METHOD FOR DETERMINING REFRACTIVE-INDEX AND THICKNESS OF FLUORESCENT THIN-FILMS
    LUKOSZ, W
    KUNZ, RE
    OPTICS COMMUNICATIONS, 1979, 31 (03) : 251 - 256
  • [6] Spectral fitting method for obtaining the refractive index and thickness of chalcogenide films
    Mao, Ning
    Song, Baoan
    Pan, Lei
    Liu, Xinli
    Lin, Changgui
    Zhang, Peiqing
    Shen, Xiang
    Dai, Shixun
    OPTICS EXPRESS, 2021, 29 (18) : 29329 - 29340
  • [7] Refractive index of CdTe1-xSex thin films estimated by Swanepoel's method
    Kashuba, A.
    Andriyevsky, B.
    Rudysh, M.
    Semkiv, I.
    Shchepanskyi, P.
    OPTICAL MATERIALS, 2025, 158
  • [8] METHOD OF MEASURING THICKNESS AND REFRACTIVE INDEX FOR THIN TRANSPARENT FILMS
    KORSHUNOV, VD
    PILIN, YG
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES-USSR, 1966, (06): : 1455 - +
  • [10] NEW METHOD FOR DETERMINING DISPERSION AND THICKNESS OF THIN-FILMS
    TORGE, R
    OPTIK, 1974, 41 (02): : 212 - 215