Accurate 6D Object Pose Estimation and Refinement in Cluttered Scenes

被引:0
|
作者
Jin, Yixiang [1 ]
Rossiter, John Anthony [1 ]
Veres, Sandor M. [1 ]
机构
[1] Univ Sheffield, Dept Amomat Control Syst & Engn, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
6D Pose Estimation; 3D Robotic Vision; 3D Object Detection;
D O I
10.5220/0010654500003061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating the 6D pose of objects is an essential part of a robot's ability to perceive their environment. This paper proposes a method for detecting a known object and estimating its 6D pose from a single RGB image. Unlike most of the state-of-the-art methods that deploy PnP algorithms for estimating 6D pose, the method here can output the 6D pose in one step. In order to obtain estimation accuracy that is comparable to RGB-D based methods, an efficient refinement algorithm, called contour alignment (CA), is presented; this can increase the predicted 6D pose accuracy significantly. We evaluate the new method in two widely used benchmarks, LINEMOD for single object pose estimation and Occlusion-LINEMOD for multiple objects pose estimation. The experiments show that the proposed method surpasses other state-of-the-art prediction approaches.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 50 条
  • [11] Generalizable and Accurate 6D Object Pose Estimation Network
    Fu, Shouxu
    Li, Xiaoning
    Yu, Xiangdong
    Cao, Lu
    Li, Xingxing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 312 - 324
  • [12] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [13] HCCG: Efficient high compatibility correspondence grouping for 3D object recognition and 6D pose estimation in cluttered scenes
    Wu, Lang
    Li, Xi
    Zhong, Kai
    Li, Zhongwei
    Wang, Congjun
    Shi, Yusheng
    MEASUREMENT, 2022, 197
  • [14] Coupled Iterative Refinement for 6D Multi-Object Pose Estimation
    Lipson, Lahav
    Teed, Zachary
    Goyal, Ankit
    Deng, Jia
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6718 - 6727
  • [15] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [16] Multiple geometry representations for 6D object pose estimation in occluded or truncated scenes
    Wang, Jichun
    Qiu, Lemiao
    Yi, Guodong
    Zhang, Shuyou
    Wang, Yang
    PATTERN RECOGNITION, 2022, 132
  • [17] CRT-6D: Fast 6D Object Pose Estimation with Cascaded Refinement Transformers
    Castro, Pedro
    Kim, Tae-Kyun
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5735 - 5744
  • [18] Fast 6D object pose refinement in depth images
    Zhang, Haoruo
    Cao, Qixin
    APPLIED INTELLIGENCE, 2019, 49 (06) : 2287 - 2300
  • [19] Fast 6D object pose refinement in depth images
    Haoruo Zhang
    Qixin Cao
    Applied Intelligence, 2019, 49 : 2287 - 2300
  • [20] 6D pose estimation and unordered picking of stacked cluttered objects
    Zhai J.
    Huang L.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2022, 54 (07): : 136 - 142