Strength development of Recycled Asphalt Pavement - Fly ash geopolymer as a road construction material

被引:158
|
作者
Hoy, Menglim [1 ]
Horpibulsuk, Suksun [1 ,2 ]
Arulrajah, Arul [3 ]
机构
[1] Suranaree Univ Technol, Sch Civil Engn, 111 Univ Ave, Nakhon 30000, Ratchasima, Thailand
[2] Suranaree Univ Technol, Ctr Excellence Innovat Sustainable Infrastruct, 111 Univ Ave, Nakhon 30000, Ratchasima, Thailand
[3] Swinburne Univ Technol, Dept Civil & Construct Engn, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
Recycled Asphalt Pavement; Geopolymer; Microstructure; Unconfined compressive strength; Pavement structure; CEMENT; STABILIZATION; ACTIVATOR; AGGREGATE; BASES;
D O I
10.1016/j.conbuildmat.2016.04.136
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the strength development of Recycled Asphalt Pavement (RAP)-Fly Ash (FA) geopolymer as a road construction material. A mixture of sodium hydroxide solution (NaOH) and sodium silicate solution (Na2SiO3) is used as a liquid alkaline activator (L). Unconfined Compression Strength (UCS) is used as an indicator to measure the strength development of RAP-FA geopolymer and RAP-FA blend (without L). The UCS development is analyzed via Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) analyses. Test results show that the compacted RAP-FA blend can be used as a base course material as its UCS values meet the specified strength requirements. The UCS of RAP-FA blends increases with time due to the formation of Calcium Silicate Hydrate (C-S-H) and Calcium Aluminate Hydrate (C-A-H), as detected from XRD and SEM analyses. The UCS of RAP-FA geopolymer increases as the NaOH/Na2SiO3 ratio decreases and is higher than those of compacted RAP-FA blends. When the NaOH/Na2SiO3 ratios are less than 90:10. At an early stage of 7 days and room temperature curing, XRD and SEM analyses indicate that low geopolymerization products (N-A-S-H) in RAP-FA geopolymer are detected when only NaOH (NaOH/Na2SiO3 = 100:0) is used as L, hence the UCS of RAP-FA geopolymer at NaOH/Na2SiO3 = 100:0 is lower than that of RAP-FA blends. With increasing curing time and temperature, NaOH solution dissolves more silica and alumina from FA in the geopolymerization reaction, hence the UCS developed with time and temperature. The highly soluble silica from Na2SiO3 incorporates with leached silica and alumina from FA into a N-A-S-H gel which co-exists with C-S-H and C-A-H from RAP and FA reaction. Therefore, the 7-day UCS values of RAP-FA geopolymer increase with decreasing NaOH/Na2SiO3 ratios for both room temperature and 40 degrees C curing. This research study confirms the potential of RAP-FA blends and RAP-FA geopolymers as an alternative stabilized pavement material. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:209 / 219
页数:11
相关论文
共 50 条
  • [11] Stabilization of Recycled Concrete Aggregate Using High Calcium Fly Ash Geopolymer as Pavement Base Material
    Tiyasangthong, Sermsak
    Yoosuk, Piyathida
    Krosoongnern, Kitsada
    Sakdinakorn, Ratchanon
    Tabyang, Wisitsak
    Phojan, Worawit
    Suksiripattanapong, Cherdsak
    INFRASTRUCTURES, 2022, 7 (09)
  • [12] Construction and performance of fly ash-stabilized cold in-place recycled asphalt pavement in Wisconsin
    Crovetti, JA
    ISSUES IN PAVEMENT DESIGN AND REHABILITATION: PAVEMENT DESIGN MANAGEMENT AND PERFORMANCE, 2000, (1730): : 161 - 166
  • [13] Effect of Fly Ash Geopolymer on Layer Coefficients of Reclaimed Asphalt Pavement Bases
    Saride, Sireesh
    Jallu, Maheshbabu
    JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2020, 146 (03)
  • [14] Fly Ash Based Geopolymer Bricks: A Sustainable Construction Material
    Balakrishnan, Niveditha
    Usha, S.
    Thomas, Ponny K.
    PROCEEDINGS OF STRUCTURAL ENGINEERING AND CONSTRUCTION MANAGEMENT, SECON'19, 2020, 46 : 279 - 290
  • [15] Strength development in clay-fly ash geopolymer
    Sukmak, Patimapon
    Horpibulsuk, Suksun
    Shen, Shui-Long
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 40 : 566 - 574
  • [16] Strength and durability characteristics of geopolymer treated pond ash as pavement material
    Varma, Datla Neeraj
    Singh, Suresh Prasad
    ROAD MATERIALS AND PAVEMENT DESIGN, 2024,
  • [17] Fly-ash as Material for Road Construction (I).
    Taeubert, Ulrich
    Strassen- und Tiefbau, 1983, 37 (05): : 24 - 27
  • [18] Fly-ash as material for road construction (II)
    Taubert, U.
    Strassen- und Tiefbau, 1983, 37 (06): : 22 - 28
  • [19] Cement-fly ash stabilization of cold in-place recycled (CIR) asphalt pavement mixtures for road bases or subbases
    Li Xiangguo
    Yin Xiaobo
    Ma Baoguo
    Huang Jian
    Li Junxiao
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2013, 28 (02): : 298 - 302
  • [20] Cement-fly ash stabilization of cold in-place recycled (CIR) asphalt pavement mixtures for road bases or subbases
    Xiangguo Li
    Xiaobo Yin
    Baoguo Ma
    Jian Huang
    Junxiao Li
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 298 - 302