Building Efficient and Compact Data Structures for Simplicial Complexes

被引:9
|
作者
Boissonnat, Jean-Daniel [1 ]
Karthik, C. S. [2 ]
Tavenas, Sebastien [3 ]
机构
[1] INRIA Sophia Antipolis Mediterranee, Geometr, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
[2] Weizmann Inst Sci, Dept Comp Sci & Appl Math, Rehovot, Israel
[3] Microsoft Res India, Bangalore, Karnataka, India
基金
欧洲研究理事会;
关键词
Simplicial complex; Compact data structures; Automaton; NP-hard; AUTOMATA;
D O I
10.1007/s00453-016-0207-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Simplex Tree (ST) is a recently introduced data structure that can represent abstract simplicial complexes of any dimension and allows efficient implementation of a large range of basic operations on simplicial complexes. In this paper, we show how to optimally compress the ST while retaining its functionalities. In addition, we propose two new data structures called the Maximal Simplex Tree and the Simplex Array List. We analyze the compressed ST, the Maximal Simplex Tree, and the Simplex Array List under various settings.
引用
收藏
页码:530 / 567
页数:38
相关论文
共 50 条
  • [41] Cores of Simplicial Complexes
    Mario Marietti
    Damiano Testa
    Discrete & Computational Geometry, 2008, 40 : 444 - 468
  • [42] On groups and simplicial complexes
    Lubotzky, Alexander
    Luria, Zur
    Rosenthal, Ron
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 408 - 444
  • [43] Abstract Simplicial Complexes
    Pak, Karol
    FORMALIZED MATHEMATICS, 2010, 18 (01): : 95 - 106
  • [44] Pointed simplicial complexes
    Charalambous, H
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (01) : 1 - 9
  • [45] Uniformly Cohen-Macaulay simplicial complexes and almost Gorenstein* simplicial complexes
    Matsuoka, Naoyuki
    Murai, Satoshi
    JOURNAL OF ALGEBRA, 2016, 455 : 14 - 31
  • [46] Deformations of simplicial structures
    Balke, L
    MATHEMATISCHE ANNALEN, 1998, 310 (02) : 251 - 277
  • [47] Completions and Simplicial Complexes
    Bertrand, Gilles
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 2011, 6607 : 129 - 140
  • [48] Retraction of Simplicial Complexes
    El-Ghoul, M.
    El-Ahmady, A. E.
    Homoda, T.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2006, 4 (J06): : 54 - 67
  • [49] Random Simplicial Complexes
    Costa, Armindo
    Farber, Michael
    CONFIGURATION SPACES: GEOMETRY, TOPOLOGY AND REPRESENTATION THEORY, 2016, 14 : 129 - 153
  • [50] SUBSPACES OF SIMPLICIAL COMPLEXES
    CAUTY, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (16): : 774 - &