Building Efficient and Compact Data Structures for Simplicial Complexes

被引:9
|
作者
Boissonnat, Jean-Daniel [1 ]
Karthik, C. S. [2 ]
Tavenas, Sebastien [3 ]
机构
[1] INRIA Sophia Antipolis Mediterranee, Geometr, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
[2] Weizmann Inst Sci, Dept Comp Sci & Appl Math, Rehovot, Israel
[3] Microsoft Res India, Bangalore, Karnataka, India
基金
欧洲研究理事会;
关键词
Simplicial complex; Compact data structures; Automaton; NP-hard; AUTOMATA;
D O I
10.1007/s00453-016-0207-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Simplex Tree (ST) is a recently introduced data structure that can represent abstract simplicial complexes of any dimension and allows efficient implementation of a large range of basic operations on simplicial complexes. In this paper, we show how to optimally compress the ST while retaining its functionalities. In addition, we propose two new data structures called the Maximal Simplex Tree and the Simplex Array List. We analyze the compressed ST, the Maximal Simplex Tree, and the Simplex Array List under various settings.
引用
收藏
页码:530 / 567
页数:38
相关论文
共 50 条
  • [1] Building Efficient and Compact Data Structures for Simplicial Complexes
    Jean-Daniel Boissonnat
    Sébastien Karthik C. S.
    Algorithmica, 2017, 79 : 530 - 567
  • [2] Data structures for Simplicial Multi-Complexes
    De Floriani, L
    Magillo, P
    Puppo, E
    ADVANCES IN SPATIAL DATABASES, 1999, 1651 : 33 - 51
  • [3] The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes
    Boissonnat, Jean-Daniel
    Maria, Clement
    ALGORITHMICA, 2014, 70 (03) : 406 - 427
  • [4] The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes
    Jean-Daniel Boissonnat
    Clément Maria
    Algorithmica, 2014, 70 : 406 - 427
  • [5] The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes
    Boissonnat, Jean-Daniel
    Maria, Clement
    ALGORITHMS - ESA 2012, 2012, 7501 : 731 - 742
  • [6] Simplicial complexes with lattice structures
    Bergman, George M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (01): : 439 - 486
  • [7] Efficient Representation Learning for Higher-Order Data with Simplicial Complexes
    Yang, Ruochen
    Sala, Frederic
    Bogdan, Paul
    LEARNING ON GRAPHS CONFERENCE, VOL 198, 2022, 198
  • [8] Efficient Data Structure for Representing and Simplifying Simplicial Complexes in High Dimensions
    Attali, Dominique
    Lieutier, Andre
    Salinas, David
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 501 - 509
  • [9] EFFICIENT DATA STRUCTURE FOR REPRESENTING AND SIMPLIFYING SIMPLICIAL COMPLEXES IN HIGH DIMENSIONS
    Attali, Dominique
    Lieutier, Andre
    Salinas, David
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2012, 22 (04) : 279 - 303
  • [10] An Efficient Representation for Filtrations of Simplicial Complexes
    Boissonnat, Jean-Daniel
    Karthik, C. S.
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2705 - 2720