Microscopic cascading of second-order molecular nonlinearity: new design principles for enhancing third-order nonlinearity

被引:17
|
作者
Baev, Alexander [1 ]
Autschbach, Jochen [2 ]
Boyd, Robert W. [3 ]
Prasad, Paras N. [1 ]
机构
[1] SUNY Buffalo, Inst Lasers Photon & Biophoton, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Inst Opt, Buffalo, NY 14260 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 08期
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; BOND-LENGTH ALTERNATION; EXCITED-STATES; FIELD; POLARIZABILITIES;
D O I
10.1364/OE.18.008713
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para) nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects. (C) 2010 Optical Society of America
引用
收藏
页码:8713 / 8721
页数:9
相关论文
共 50 条
  • [31] Mutual compensation of the higher-order nonlinearity and the third-order dispersion
    CCAST , P.O. Box 8730, Beijing 100080, China
    不详
    不详
    Phys Lett Sect A Gen At Solid State Phys, 1-3 (67-72):
  • [32] Mutual compensation of the higher-order nonlinearity and the third-order dispersion
    Liu, SL
    Liu, XQ
    PHYSICS LETTERS A, 1997, 225 (1-3) : 67 - 72
  • [33] Second-order optical nonlinearity and magnetic order in disordered oxides
    Tanaka, K
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2005, 113 (1320) : 501 - 508
  • [34] Features of third-order optical nonlinearity in carbon disulfide
    Poperenko, L., V
    Rozouvan, S. G.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2019, 22 (02) : 224 - 230
  • [35] Third-order nonlinearity in silicon beyond 2350 nm
    Gholami, Faezeh
    Zlatanovic, Sanja
    Simic, Aleksandar
    Liu, Lan
    Borlaug, David
    Alic, Nikola
    Nezhad, Maziar P.
    Fainman, Yeshaiahu
    Radic, Stojan
    APPLIED PHYSICS LETTERS, 2011, 99 (08)
  • [36] Third-order nonlinearity of nickel oxide nanoparticles in toluene
    Gomez, Luis A.
    de Araujo, Cid B.
    Rossi, L. M.
    Masunaga, S. H.
    Jardim, R. F.
    OPTICS LETTERS, 2007, 32 (11) : 1435 - 1437
  • [37] Supramolecular enhancement of second-order optical nonlinearity
    Kauranen, Martti
    Verbiest, Thierry
    Boutton, Carlo
    Houbrechts, Stephan
    Persoons, Andre
    Samyn, Celest
    1996, Optical Society of America (OSA) (07):
  • [38] Cascaded second-order nonlinearity in an optical cavity
    White, A. G.
    Mlynek, J.
    Schiller, S.
    Europhysics Letters, 35 (06):
  • [39] Third-order nonlinearity compensation in field effect transistors
    Khan, B. M.
    Simin, G. S.
    ELECTRONICS LETTERS, 2011, 47 (24) : 1343 - U62
  • [40] Third-Order Optical Nonlinearity of CdSe/PVA Nanocomposites
    Sharma, Mamta
    Tripathi, S. K.
    INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011), 2011, 1393