A result on common quadratic Lyapunov functions

被引:0
|
作者
Shorten, R [1 ]
Narendra, KS [1 ]
Mason, O [1 ]
机构
[1] NUI Maynooth, Hamilton Inst, Maynooth, Kildare, Ireland
来源
PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4 | 2002年
关键词
stability theory; switched linear systems; quadratic stability;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we define strong and weak common quadratic Lyapunov functions (CQLF's) for sets of linear time-invariant (LTI) systems. We show that the simultaneous existence of a weak CQLF of a special form, and the non-existence of a strong CQLF, for a pair of LTI systems, is characterised by easily verifiable algebraic conditions. These conditions are found to play an important role in proving the existence of strong CQLF's for general LTI systems.
引用
收藏
页码:2780 / 2785
页数:6
相关论文
共 50 条
  • [41] Quadratic Lyapunov functions for cooperative control of networked systems
    Qu, Zhihua
    Wang, Jing
    Li, Xin
    2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2908 - +
  • [42] Construction of Lyapunov Functions in the Form of Pencils of Quadratic Forms
    Hrod I.M.
    Kulyk V.L.
    Journal of Mathematical Sciences, 2019, 243 (2) : 183 - 191
  • [43] Composite Homogeneous Parameter Dependent Quadratic Lyapunov Functions
    Pang, Guochen
    Xiang, Zhong
    Zhao, Feng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 100 - 105
  • [44] Coercive quadratic ISS Lyapunov functions for analytic systems
    Mironchenko, Andrii
    Schwenninger, Felix
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4699 - 4704
  • [45] On several composite quadratic Lyapunov functions for switched systems
    Hu, Tingshu
    Ma, Liqiang
    Lin, Zongli
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 116 - +
  • [46] An inequality for periodic functions and a quadratic imbedding result
    Auchmuty, G
    He, JW
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2000, 21 (7-8) : 781 - 789
  • [47] Global Stabilization of Nonlinear Systems by Quadratic Lyapunov Functions
    Zuber, I. E.
    Gelig, A. Kh.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2010, 43 (01) : 49 - 53
  • [48] Computation of piecewise quadratic Lyapunov functions for hybrid systems
    Johansson, M
    Rantzer, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) : 555 - 559
  • [49] Composite quadratic Lyapunov functions for constrained control systems
    Hu, TS
    Lin, ZL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) : 440 - 450
  • [50] LINEAR LYAPUNOV FUNCTIONS FOR VOLTERRA QUADRATIC STOCHASTIC OPERATORS
    Jamilov, U. U.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, 3 (01): : 28 - 34