Estimating maximum shear modulus (G0) using adaptive neuro-fuzzy inference system (ANFIS)

被引:7
|
作者
Vatanshenas, Ali [1 ]
Lansivaara, Tim Tapani [1 ]
机构
[1] Tampere Univ, Fac Built Environm, Korkeakoulunkatu 5, Tampere 33720, Finland
关键词
Anfis; Fuzzy sets; Shear modulus; Soil dynamics; Very small strain; LOGIC; STIFFNESS;
D O I
10.1016/j.soildyn.2021.107105
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Realistic estimation of soil behavior is dependent on considering very small and small strain domains. Lengthy formulas proposed in the literature have limited predictive power for estimation of maximum shear modulus, G0. The aim of this study is to overcome this drawback. Theoretical aspects of fuzzy sets and adaptive neuro-fuzzy inference system (Anfis) are presented. Then, Anfis is implemented within a logical platform that adapts itself with available data to estimate and describe G0.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] An adaptive neuro-fuzzy inference system (ANFIS) model for thermophysical properties of new refrigerant
    Sencan, Arzu
    Kose, Ismail Ilke
    Selbas, Resat
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 27 (02): : 275 - 286
  • [42] Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS)
    Cai, CH
    Du, D
    Liu, ZY
    PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 1068 - 1073
  • [43] Momentum Analysis based Stock Market Prediction using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Agrawal, Samarth
    Jindal, Manoj
    Pillai, G. N.
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 526 - +
  • [44] Assessment of groundwater corrosivity in Hamedan Province, Iran using an adaptive neuro-fuzzy inference system (ANFIS)
    Abyaneh, Hamid Zare
    Varkeshi, Maryam Bayat
    Mohammadi, Kourosh
    Howard, Ken
    Marofi, Safar
    GEOSCIENCES JOURNAL, 2011, 15 (04) : 433 - 439
  • [45] ANFIS (Adaptive Neuro-Fuzzy Inference System) based on Microgrid's Reliability and Availability
    Yadav, Geeta
    Joshi, Dheeraj
    Leena, G.
    Soni, M. K.
    2022 IEEE 10TH POWER INDIA INTERNATIONAL CONFERENCE, PIICON, 2022,
  • [46] Modelling of Partial Discharge Inception and Extinction Voltages Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Kolev, N. P.
    Chalashkanov, N. M.
    2007 IEEE INTERNATIONAL CONFERENCE ON SOLID DIELECTRICS, VOLS 1 AND 2, 2007, : 605 - 608
  • [47] Discrimination between partial discharge pulses in voids using adaptive neuro-fuzzy inference system (ANFIS)
    Kolev, N.
    Chalashkanov, N.
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON NEURAL NETWORKS (NN' 08): ADVANCED TOPICS ON NEURAL NETWORKS, 2008, : 15 - 19
  • [48] Prediction of breast dose in chest CT examinations using adaptive neuro-fuzzy inference system (ANFIS)
    Bahareh Moradmand Bahonar
    Vahid Changizi
    Ali Ebrahiminia
    Samaneh Baradaran
    Physical and Engineering Sciences in Medicine, 2023, 46 : 1071 - 1080
  • [49] APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) TO PREDICT THE WEAR OF FORGING TOOLS
    Hawryluk, Marek
    Mrzyglod, Barbara
    METAL 2016: 25TH ANNIVERSARY INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2016, : 378 - 385
  • [50] Predicting of daily reference evapotranspiration via Adaptive Neuro-Fuzzy Inference System( ANFIS)
    Cai, JB
    Liu, QX
    Liu, Y
    Land and Water Management: Decision Tools and Practices, Vols 1 and 2, 2004, : 485 - 489