A data interpretation approach for deep learning-based prediction models

被引:3
|
作者
Dadsetan, Saba [1 ]
Wu, Shandong [1 ,2 ,3 ,4 ]
机构
[1] Univ Pittsburgh, Sch Comp & Informat, Intelligent Syst Program, 210 S Bouquet St, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Radiol, 3362 Fifth Ave, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Dept Biomed Informat, 3362 Fifth Ave, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Dept Bioengn, 3362 Fifth Ave, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
Deep learning; model interpretation; data interpretation; breast cancer; contribution map;
D O I
10.1117/12.2513098
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning models based on Convolutional Neural Networks (CNN) are known as successful tools in many classification and segmentation studies. Although these kinds of tools can achieve impressive performance, we still lack effective means to interpret the models, features, and the associated input data on how a model can work well in a data-driven manner. In this paper, we propose a novel investigation to interpret a deep-learning-based model for breast cancer risk prediction using screening digital mammogram images. First, we build a CNN-based risk prediction model by using normal screening mammogram images. Then we developed two different/separate schemes to explore the interpretability. In Scheme 1, we apply a sliding window-based approach to modify the input images; that is, we only keep the sub-regional imaging data inside the sliding window but padding other regions with zeros, and we observe how such an effective sub-regional input may lead to changes in the model's performance. We generated heatmaps of the AUCs with regards to all sliding windows and showed that the heatmaps can help interpret a potential correlation/response between given sliding windows and the model AUC variation. In Scheme 2, we followed the saliency map-based approach to create a Contribution Map (CM), where the CM value of each pixel reflects the strength of that pixels contributes to the prediction of the output label. Then over a CM, we identify a bounding box around the most informative sub-area of a CM to interpret the corresponding sub-area in the images as the region that is most predictive of the risk. This preliminary study demonstrates a proof of concept on developing an effective means to interpret deep learning CNN models.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Evaluation of Deep Learning-based prediction models in Microgrids
    Gyoeri, Alexey
    Niederau, Mathis
    Zeller, Violett
    Stich, Volker
    2019 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2019, : 95 - 99
  • [2] An integrated deep learning-based approach for automobile maintenance prediction with GIS data
    Chen, Chong
    Liu, Ying
    Sun, Xianfang
    Di Cairano-Gilfedder, Carla
    Titmus, Scott
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 216
  • [3] A Deep Learning-Based Approach for Foot Placement Prediction
    Lee, Sung-Wook
    Asbeck, Alan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4959 - 4966
  • [4] Adversarial Robustness for Deep Learning-Based Wildfire Prediction Models
    Ide, Ryo
    Yang, Lei
    FIRE-SWITZERLAND, 2025, 8 (02):
  • [5] Hybrid Deep Learning-based Models for Crop Yield Prediction
    Oikonomidis, Alexandros
    Catal, Cagatay
    Kassahun, Ayalew
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [6] Analysis on the Channel Prediction Accuracy of Deep Learning-based Approach
    Son, Woo-Sung
    Han, Dong Seog
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 140 - 143
  • [7] A comprehensive review of deep learning-based models for heart disease prediction
    Zhou, Chunjie
    Dai, Pengfei
    Hou, Aihua
    Zhang, Zhenxing
    Liu, Li
    Li, Ali
    Wang, Fusheng
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (09)
  • [8] Hepatitis C Prediction Using Machine Learning and Deep Learning-Based Hybrid Approach with Biomarker and Clinical Data
    Rokiya Ripa
    Khandaker Mohammad Mohi Uddin
    Mir Jafikul Alam
    Md. Mahbubur Rahman
    Biomedical Materials & Devices, 2025, 3 (1): : 558 - 575
  • [9] Finetuned Deep Learning Models for Fuel Classification: A Transfer Learning-Based Approach
    Shanmugam, Hemachandiran
    Gnanasekaran, Aghila
    ENERGIES, 2025, 18 (05)
  • [10] Interpretation of machine learning-based prediction models and functional metagenomic approach to identify critical genes in HBCD degradation
    Lin, Yu-Jie
    Hsieh, Ping-Heng
    Mao, Chun-Chia
    Shih, Yang-Hsin
    Chen, Shu-Hwa
    Lin, Chung-Yen
    JOURNAL OF HAZARDOUS MATERIALS, 2025, 486