Hepatitis C Prediction Using Machine Learning and Deep Learning-Based Hybrid Approach with Biomarker and Clinical Data

被引:0
|
作者
Rokiya Ripa [1 ]
Khandaker Mohammad Mohi Uddin [2 ]
Mir Jafikul Alam [1 ]
Md. Mahbubur Rahman [3 ]
机构
[1] Dhaka International University,Department of Computer Science and Engineering
[2] Southeast University,Department of Computer Science and Engineering
[3] Bangladesh University of Business and Technology,Department of Computer Science and Engineering
来源
Biomedical Materials & Devices | 2025年 / 3卷 / 1期
关键词
Machine learning; Predictions; Deep learning; Hepatitis C virus; Classification;
D O I
10.1007/s44174-024-00197-x
中图分类号
学科分类号
摘要
Chronic liver damage is believed to be mostly caused by the Hepatitis C virus (HCV). About 90% of hepatitis C infections progress to chronic hepatitis. Acute HCV infection is a condition that frequently progresses to liver cirrhosis and eventually liver cancer; therefore, understanding this stage of the virus is essential. Molecular and serological testing approaches are often expensive and difficult to perform for diagnosing HCV infection. Machine learning technology can be effectively employed to identify patterns or associations for diagnosing HCV infection. The study utilized machine learning techniques to develop classification models for hepatitis C illness, aiming to anticipate the virus responsible for the infection. Our research integrates various machine learning algorithms, including Random Forest, Cat Boost, Bagging Classifier, SGD Classifier, Gaussian NB, Bernoulli NB, Multinomial NB, Linear Discriminant Analysis, ANN, and MLP. Prior to training the models, preprocessing methods, including normalization, filtering, and SMOTE, were used to improve the dataset’s attributes. The classification accuracy scores show encouraging results, with ANN scoring 79.63%, MLP scoring 46.29%, Bernoulli NB scoring 79.62%, Cat Boost scoring 98.14%, and Random Forest scoring 99.53%. Among classification methods, random forest demonstrates the highest accuracy in diagnosing HCV infection.
引用
收藏
页码:558 / 575
页数:17
相关论文
共 50 条
  • [1] A data interpretation approach for deep learning-based prediction models
    Dadsetan, Saba
    Wu, Shandong
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [2] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)
  • [3] Efficient SST prediction in the Red Sea using hybrid deep learning-based approach
    Hittawe, M. M.
    Langodan, S.
    Beya, O.
    Hoteit, I
    Knio, O.
    2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2022, : 107 - 114
  • [4] A machine learning-based approach for the prediction of periprocedural myocardial infarction by using routine data
    Wang, Yao
    Zhu, Kangjun
    Li, Ya
    Lv, Qingbo
    Fu, Guosheng
    Zhang, Wenbin
    CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2020, 10 (05) : 1313 - 1324
  • [5] Hepatitis C virus data analysis and prediction using machine learning
    Yaganoglu, Mete
    DATA & KNOWLEDGE ENGINEERING, 2022, 142
  • [6] A hybrid numerical–probabilistic approach for machine learning-based prediction of liquefaction-induced settlement using CPT data
    Tanmay Gupta
    G V Ramana
    Ahmed Elgamal
    Arabian Journal of Geosciences, 2023, 16 (6)
  • [7] Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia
    Zhang He
    Yin Mengting
    Liu Qianhui
    Ding Fei
    Hou Lisha
    Deng Yiping
    Cui Tao
    Han Yixian
    Pang Weiguang
    Ye Wenbin
    Yue Jirong
    He Yong
    中华医学杂志英文版, 2023, 136 (08)
  • [8] Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia
    Zhang, He
    Yin, Mengting
    Liu, Qianhui
    Ding, Fei
    Hou, Lisha
    Deng, Yiping
    Cui, Tao
    Han, Yixian
    Pang, Weiguang
    Ye, Wenbin
    Yue, Jirong
    He, Yong
    CHINESE MEDICAL JOURNAL, 2023, 136 (08) : 967 - 973
  • [9] PROTA: A Robust Tool for Protamine Prediction Using a Hybrid Approach of Machine Learning and Deep Learning
    Farias, Jorge G.
    Herrera-Belen, Lisandra
    Jimenez, Luis
    Beltran, Jorge F.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (19)
  • [10] Hybrid Ensemble Deep Learning-Based Approach for Time Series Energy Prediction
    Phyo, Pyae Pyae
    Byun, Yung-Cheol
    SYMMETRY-BASEL, 2021, 13 (10):