Improving the modified Gauss-Seidel method for Z-matrices

被引:79
|
作者
Kohno, T [1 ]
Kotakemori, H [1 ]
Niki, H [1 ]
Usui, M [1 ]
机构
[1] OKAYAMA UNIV SCI,DEPT APPL SCI,OKAYAMA 700,JAPAN
关键词
D O I
10.1016/S0024-3795(97)00063-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1991 A. D. Gunawardena et al. reported that the convergence rate of the Gauss-Seidel method with a preconditioning matrix I + S is superior to that of the basic iterative method. In this paper, we use the preconditioning matrix I + S(cr). If a coefficient matrix A is an irreducibly diagonally dominant Z-matrix, then [I + S(alpha)]A is also a strictly diagonally dominant Z-matrix. It is shown that the proposed method is also superior to other iterative methods. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
  • [41] Gauss-Seidel Method for AX plus BXC = D
    Long, Jianhui
    He, Youmei
    Hu, Xiyan
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 210 - 213
  • [42] Modified SOR-type iterative method for Z-matrices
    Huang, Ting-Zhu
    Cheng, Guang-Hui
    Cheng, Xiao-Yu
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 258 - 268
  • [43] Preconditioned Gauss-Seidel iterative method for linear systems
    He Honghao
    Yuan Dongjin
    Hou Yi
    Xu Jinqiu
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 1, PROCEEDINGS, 2009, : 382 - 385
  • [44] Improved Gauss-Seidel projecetion method for micromagnetics simulation
    García-Cervera, CJ
    E, W
    IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (03) : 1766 - 1770
  • [45] ON CONVERGENCE OF THE MODIFIED GAUSS-SEIDEL ITERATIVE METHOD FOR H-MATRIX LINEAR SYSTEM
    Mia, Shu-Xin
    Zheng, Bing
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03): : 603 - 613
  • [46] Optimal Preconditioning for the Interval Parametric Gauss-Seidel Method
    Hladik, Milan
    SCIENTIFIC COMPUTING, COMPUTER ARITHMETIC, AND VALIDATED NUMERICS (SCAN 2014), 2016, 9553 : 116 - 125
  • [47] ASYNCHRONOUS MULTISPLITTING NONLINEAR GAUSS-SEIDEL TYPE METHOD
    BAI ZHONGZHI AND WANG DEREN
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 1994, (02) : 189 - 194
  • [49] ADAPTIVE GAUSS-SEIDEL METHOD FOR LINEAR-SYSTEMS
    USUI, M
    NIKI, H
    KOHNO, T
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 51 (1-2) : 119 - 125
  • [50] A Parallel Jacobi-Embedded Gauss-Seidel Method
    Ahmadi, Afshin
    Manganiello, Felice
    Khademi, Amin
    Smith, Melissa C.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (06) : 1452 - 1464