HIERARCHICAL MODEL REDUCTION TECHNIQUES FOR FLOW MODELING IN A PARAMETRIZED SETTING

被引:3
|
作者
Zancanaro, Matteo [1 ]
Ballarin, Francesco [1 ]
Perotto, Simona [2 ]
Rozza, Gianluigi [1 ]
机构
[1] SISSA, mathLab, Math Area, Via Bonomea 265, I-34136 Trieste, Italy
[2] Politecn Milan, Dipartimento Matemat, MOX, Piazza L da Vinci 32, I-20133 Milan, Italy
来源
MULTISCALE MODELING & SIMULATION | 2021年 / 19卷 / 01期
基金
欧盟地平线“2020”;
关键词
hierarchical model reduction; projection-based reduced order modeling; proper orthogonal decomposition; reduced basis method; parametrized problems;
D O I
10.1137/19M1285330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we focus on two different methods to deal with parametrized partial differential equations in an efficient and accurate way. Starting from high fidelity approximations built via the hierarchical model reduction discretization, we consider two approaches, both based on a projection model reduction technique. The two methods differ for the algorithm employed during the construction of the reduced basis. In particular, the former employs the proper orthogonal decomposition, while the latter relies on a greedy algorithm according to the certified reduced basis technique. The two approaches are preliminarily compared on two-dimensional scalar and vector test cases.
引用
收藏
页码:267 / 293
页数:27
相关论文
共 50 条
  • [21] Subthreshold leakage modeling and reduction techniques
    Kao, J
    Narendra, S
    Chandrakasan, A
    IEEE/ACM INTERNATIONAL CONFERENCE ON CAD-02, DIGEST OF TECHNICAL PAPERS, 2002, : 141 - 148
  • [22] Hierarchical model reduction at multiple scales
    Yuan, Zheng
    Fish, Jacob
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (03) : 314 - 339
  • [23] A Parametrized Model Order Reduction Method Based on Integral Equation for Array Structures
    Ying, Xiaojie
    Shao, Hanru
    Hu, Jun
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2024, 23 (04): : 1286 - 1290
  • [24] AN EFFICIENT OUTPUT ERROR ESTIMATION FOR MODEL ORDER REDUCTION OF PARAMETRIZED EVOLUTION EQUATIONS
    Zhang, Yongjin
    Feng, Lihong
    Li, Suzhou
    Benner, Peter
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : B910 - B936
  • [25] MODEL REDUCTION FOR PARAMETRIZED OPTIMAL CONTROL PROBLEMS IN ENVIRONMENTAL MARINE SCIENCES AND ENGINEERING
    Strazzullo, Maria
    Ballarin, Francesco
    Mosetti, Renzo
    Rozza, Gianluigi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : B1055 - B1079
  • [26] A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac mechanics
    Bonomi, Diana
    Manzoni, Andrea
    Quarteroni, Alfio
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 : 300 - 326
  • [27] Model order reduction for parametrized nonlinear hyperbolic problems as an application to uncertainty quantification
    Crisovan, R.
    Torlo, D.
    Abgrall, R.
    Tokareva, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 466 - 489
  • [28] Efficient modeling of multimode guided acoustic wave propagation in deformed pipelines by hierarchical model reduction
    Gentili, G. G.
    Khosronejad, M.
    Bernasconi, G.
    Perotto, S.
    Micheletti, S.
    APPLIED NUMERICAL MATHEMATICS, 2022, 173 : 329 - 344
  • [29] A NEW CERTIFIED HIERARCHICAL AND ADAPTIVE RB-ML-ROM SURROGATE MODEL FOR PARAMETRIZED PDES
    Haasdonk, Bernard
    Kleikamp, Hendrik
    Ohlberger, Mario
    Schindler, Felix
    Wenzel, Tizian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : A1039 - A1065
  • [30] Reduction and retrospection approach to modeling of hierarchical biological rhythms
    Nakao, Mitsuyuki
    Okayama, Hiroshi
    Katayama, Norihiro
    Karashima, Akihiro
    IEEJ Transactions on Electronics, Information and Systems, 2007, 127 (10) : 1486 - 1490