Development and Validation of a Two-Step Predictive Risk Stratification Model for Coronavirus Disease 2019 In-hospital Mortality: A Multicenter Retrospective Cohort Study

被引:2
|
作者
Li, Yang [1 ,2 ]
Kong, Yanlei [1 ]
Ebell, Mark H. [3 ]
Martinez, Leonardo [4 ]
Cai, Xinyan [3 ]
Lennon, Robert P. [5 ]
Tarn, Derjung M. [6 ]
Mainous, Arch G. [7 ]
Zgierska, Aleksandra E. [5 ,8 ]
Barrett, Bruce [9 ]
Tuan, Wen-Jan [5 ]
Maloy, Kevin [10 ]
Goyal, Munish [10 ]
Krist, Alex H. [11 ]
Gal, Tamas S. [12 ]
Sung, Meng-Hsuan [3 ]
Li, Changwei [13 ]
Jin, Yier [14 ]
Shen, Ye [3 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing, Peoples R China
[2] Renmin Univ China, RSS & China Re LifeJoint Lab Publ Hlth & Risk Mana, Beijing, Peoples R China
[3] Univ Georgia, Coll Publ Hlth, Dept Epidemiol & Biostat, Athens, GA 30602 USA
[4] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] Penn State Coll Med, Dept Family & Community Med, Hershey, PA USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Family Med, Los Angeles, CA USA
[7] Univ Florida, Dept Hlth Serv Res Management & Policy, Gainesville, FL USA
[8] Penn State Coll Med, Dept Public Hlth Sci, Hershey, PA USA
[9] Univ Wisconsin, Dept Family Med & Community Hlth, Madison, WI USA
[10] MedStar Washington Hosp Ctr, Dept Emergency Med, Washington, DC USA
[11] Virginia Commonwealth Univ, Dept Family Med & Populat Hlth, Richmond, VA USA
[12] Virginia Commonwealth Univ, Dept Biostat, Richmond, VA USA
[13] Tulane Univ, Sch Publ Hlth & Trop Med, Dept Epidemiol, New Orleans, LA USA
[14] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL USA
关键词
prognostic score; two-step; time-and cost-saving tool; COVID-19; multicenter cohort study; PNEUMONIA; COVID-19;
D O I
10.3389/fmed.2022.827261
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectivesAn accurate prognostic score to predict mortality for adults with COVID-19 infection is needed to understand who would benefit most from hospitalizations and more intensive support and care. We aimed to develop and validate a two-step score system for patient triage, and to identify patients at a relatively low level of mortality risk using easy-to-collect individual information. DesignMulticenter retrospective observational cohort study. SettingFour health centers from Virginia Commonwealth University, Georgetown University, the University of Florida, and the University of California, Los Angeles. PatientsCoronavirus Disease 2019-confirmed and hospitalized adult patients. Measurements and Main ResultsWe included 1,673 participants from Virginia Commonwealth University (VCU) as the derivation cohort. Risk factors for in-hospital death were identified using a multivariable logistic model with variable selection procedures after repeated missing data imputation. A two-step risk score was developed to identify patients at lower, moderate, and higher mortality risk. The first step selected increasing age, more than one pre-existing comorbidities, heart rate >100 beats/min, respiratory rate >= 30 breaths/min, and SpO(2) <93% into the predictive model. Besides age and SpO(2), the second step used blood urea nitrogen, absolute neutrophil count, C-reactive protein, platelet count, and neutrophil-to-lymphocyte ratio as predictors. C-statistics reflected very good discrimination with internal validation at VCU (0.83, 95% CI 0.79-0.88) and external validation at the other three health systems (range, 0.79-0.85). A one-step model was also derived for comparison. Overall, the two-step risk score had better performance than the one-step score. ConclusionsThe two-step scoring system used widely available, point-of-care data for triage of COVID-19 patients and is a potentially time- and cost-saving tool in practice.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Development and validation of a predictive model for in-hospital mortality in patients with sepsis-associated liver injury
    Liu, Yousheng
    Sun, Run
    Jiang, Haiyan
    Liang, Guiwen
    Huang, Zhongwei
    Qi, Lei
    Lu, Juying
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (18)
  • [42] Risk factors and outcomes for recurrent paediatric in-hospital cardiac arrest: Retrospective multicenter cohort study
    Frazier, Maria E.
    Brown, Stephanie R.
    O'Halloran, Amanda
    Raymond, Tia
    Hanna, Richard
    Niles, Dana E.
    Kleinman, Monica
    Sutton, Robert M.
    Roberts, Joan
    Tegtmeyer, Ken
    Wolfe, Heather A.
    Nadkarni, Vinay
    Dewan, Maya
    RESUSCITATION, 2021, 169 : 60 - 66
  • [43] Predictive risk factors of in-hospital mortality in adult patients with carbapenem and colistin resistant Klebsiella pneumoniae infections: a retrospective cohort study
    Benso, J.
    de Sanctis, G.
    Ferraris, A.
    Angriman, F.
    Fernandez Otero, L.
    Ducatenzeiler, L.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2018, 73 : 120 - 120
  • [44] External validation of risk scores to predict in-hospital mortality in patients hospitalized due to coronavirus disease 2019 (vol 102, pg 63, 2022)
    Hassan, Shermarke
    Ramspek, Chava L.
    Ferrari, Barbara
    van Diepen, Merel
    Rossio, Raffaella
    Knevel, Rachel
    la Mura, Vincenzo
    Artoni, Andrea
    Martinelli, Ida
    Bandera, Alessandra
    Nobili, Alessandro
    Gori, Andrea
    Blasi, Francesco
    Canetta, Ciro
    Montano, Nicola
    Rosendaal, Frits R.
    Peyvandi, Flora
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2022, 106 : 163 - 163
  • [45] Development and Validation of a Risk-Prediction Model for In-Hospital Mortality after Heart Transplantation
    Singh, T. P.
    Gauvreau, K.
    Piercey, G.
    Almond, C. S.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2011, 30 (04): : S127 - S127
  • [46] Predictive Value of CAR for In-Hospital Mortality in Patients with COVID-19 Pneumonia: A Retrospective Cohort Study
    Guney, Basak Cakir
    Tastan, Yesim Onal
    Dogantekin, Betul
    Serindag, Zeliha
    Yeniceri, Murat
    Cicek, Vedat
    Kilic, Sahhan
    Seker, Mehmet
    Cinar, Tufan
    Hayiroglu, Mert Ilker
    Kaplan, Mustafa
    ARCHIVES OF MEDICAL RESEARCH, 2021, 52 (05) : 554 - 560
  • [47] Benign descriptors and ADNEX in two-step strategy to estimate risk of malignancy in ovarian tumors: retrospective validation in IOTA5 multicenter cohort
    Landolfo, C.
    Bourne, T.
    Froyman, W.
    Van Calster, B.
    Ceusters, J.
    Testa, A. C.
    Wynants, L.
    Sladkevicius, P.
    Van Holsbeke, C.
    Domali, E.
    Fruscio, R.
    Epstein, E.
    Franchi, D.
    Kudla, M. J.
    Chiappa, V.
    Alcazar, J. L.
    Leone, F. P. G.
    Buonomo, F.
    Coccia, M. E.
    Guerriero, S.
    Deo, N.
    Jokubkiene, L.
    Savelli, L.
    Fischerova, D.
    Czekierdowski, A.
    Kaijser, J.
    Coosemans, A.
    Scambia, G.
    Vergote, I.
    Timmerman, D.
    Valentin, L.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 61 (02) : 231 - 242
  • [48] In-Hospital 30-Day Survival Among Young Adults With Coronavirus Disease 2019: A Cohort Study
    Richardson, Safiya
    Gitlin, Jordan
    Kozel, Zachary
    Levy, Sera
    Rahman, Husneara
    Hirsch, Jamie S.
    McGinn, Thomas
    Diefenbach, Michael A.
    OPEN FORUM INFECTIOUS DISEASES, 2021, 8 (06):
  • [49] Development and Validation of a Dynamic Nomogram for Predicting in-Hospital Mortality in Patients with Acute Pancreatitis: A Retrospective Cohort Study in the Intensive Care Unit
    Zou, Kang
    Huang, Shu
    Ren, Wensen
    Xu, Huan
    Zhang, Wei
    Shi, Xiaomin
    Shi, Lei
    Zhong, Xiaolin
    Peng, Yan
    Lu, Muhan
    Tang, Xiaowei
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2023, 16 : 2541 - 2553
  • [50] Development and validation of a dynamic nomogram for predicting in-hospital mortality in patients with gastrointestinal bleeding: a retrospective cohort study in the intensive care unit
    Zou, Kang
    Huang, Shu
    Ren, Wensen
    Xu, Huan
    Liu, Zhiying
    Zhang, Wei
    Shi, Lei
    Pu, Xinxin
    Lv, Yinqin
    Peng, Yan
    Yuan, Fangfang
    Tang, Xiaowei
    SCIENTIFIC REPORTS, 2024, 14 (01):