Development and Validation of a Two-Step Predictive Risk Stratification Model for Coronavirus Disease 2019 In-hospital Mortality: A Multicenter Retrospective Cohort Study

被引:2
|
作者
Li, Yang [1 ,2 ]
Kong, Yanlei [1 ]
Ebell, Mark H. [3 ]
Martinez, Leonardo [4 ]
Cai, Xinyan [3 ]
Lennon, Robert P. [5 ]
Tarn, Derjung M. [6 ]
Mainous, Arch G. [7 ]
Zgierska, Aleksandra E. [5 ,8 ]
Barrett, Bruce [9 ]
Tuan, Wen-Jan [5 ]
Maloy, Kevin [10 ]
Goyal, Munish [10 ]
Krist, Alex H. [11 ]
Gal, Tamas S. [12 ]
Sung, Meng-Hsuan [3 ]
Li, Changwei [13 ]
Jin, Yier [14 ]
Shen, Ye [3 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing, Peoples R China
[2] Renmin Univ China, RSS & China Re LifeJoint Lab Publ Hlth & Risk Mana, Beijing, Peoples R China
[3] Univ Georgia, Coll Publ Hlth, Dept Epidemiol & Biostat, Athens, GA 30602 USA
[4] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] Penn State Coll Med, Dept Family & Community Med, Hershey, PA USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Family Med, Los Angeles, CA USA
[7] Univ Florida, Dept Hlth Serv Res Management & Policy, Gainesville, FL USA
[8] Penn State Coll Med, Dept Public Hlth Sci, Hershey, PA USA
[9] Univ Wisconsin, Dept Family Med & Community Hlth, Madison, WI USA
[10] MedStar Washington Hosp Ctr, Dept Emergency Med, Washington, DC USA
[11] Virginia Commonwealth Univ, Dept Family Med & Populat Hlth, Richmond, VA USA
[12] Virginia Commonwealth Univ, Dept Biostat, Richmond, VA USA
[13] Tulane Univ, Sch Publ Hlth & Trop Med, Dept Epidemiol, New Orleans, LA USA
[14] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL USA
关键词
prognostic score; two-step; time-and cost-saving tool; COVID-19; multicenter cohort study; PNEUMONIA; COVID-19;
D O I
10.3389/fmed.2022.827261
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectivesAn accurate prognostic score to predict mortality for adults with COVID-19 infection is needed to understand who would benefit most from hospitalizations and more intensive support and care. We aimed to develop and validate a two-step score system for patient triage, and to identify patients at a relatively low level of mortality risk using easy-to-collect individual information. DesignMulticenter retrospective observational cohort study. SettingFour health centers from Virginia Commonwealth University, Georgetown University, the University of Florida, and the University of California, Los Angeles. PatientsCoronavirus Disease 2019-confirmed and hospitalized adult patients. Measurements and Main ResultsWe included 1,673 participants from Virginia Commonwealth University (VCU) as the derivation cohort. Risk factors for in-hospital death were identified using a multivariable logistic model with variable selection procedures after repeated missing data imputation. A two-step risk score was developed to identify patients at lower, moderate, and higher mortality risk. The first step selected increasing age, more than one pre-existing comorbidities, heart rate >100 beats/min, respiratory rate >= 30 breaths/min, and SpO(2) <93% into the predictive model. Besides age and SpO(2), the second step used blood urea nitrogen, absolute neutrophil count, C-reactive protein, platelet count, and neutrophil-to-lymphocyte ratio as predictors. C-statistics reflected very good discrimination with internal validation at VCU (0.83, 95% CI 0.79-0.88) and external validation at the other three health systems (range, 0.79-0.85). A one-step model was also derived for comparison. Overall, the two-step risk score had better performance than the one-step score. ConclusionsThe two-step scoring system used widely available, point-of-care data for triage of COVID-19 patients and is a potentially time- and cost-saving tool in practice.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Development and validation of a dynamic 48-hour in-hospital mortality risk stratification for COVID-19 in a UK teaching hospital: a retrospective cohort study
    Wiegand, Martin
    Cowan, Sarah L.
    Waddington, Claire S.
    Halsall, David J.
    Keevil, Victoria L.
    Tom, Brian D. M.
    Taylor, Vince
    Gkrania-Klotsas, Effrossyni
    Preller, Jacobus
    Goudie, Robert J. B.
    BMJ OPEN, 2022, 12 (09):
  • [2] External validation of risk scores to predict in-hospital mortality in patients hospitalized due to coronavirus disease 2019
    Hassan, Shermarke
    Ramspek, Chava L.
    Ferrari, Barbara
    van Diepen, Merel
    Rossio, Raffaella
    Knevel, Rachel
    la Mura, Vincenzo
    Artoni, Andrea
    Martinelli, Ida
    Bandera, Alessandra
    Nobili, Alessandro
    Gori, Andrea
    Blasi, Francesco
    Canetta, Ciro
    Montano, Nicola
    Rosendaal, Frits R.
    Peyvandi, Flora
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2022, 102 : 63 - 71
  • [3] Association between Nafamostat Mesylate and In-Hospital Mortality in Patients with Coronavirus Disease 2019: A Multicenter Observational Study
    Inokuchi, Ryota
    Kuno, Toshiki
    Komiyama, Jun
    Uda, Kazuaki
    Miyamoto, Yoshihisa
    Taniguchi, Yuta
    Abe, Toshikazu
    Ishimaru, Miho
    Adomi, Motohiko
    Tamiya, Nanako
    Iwagami, Masao
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (01)
  • [4] Pregnancy and the Risk of In-Hospital Coronavirus Disease 2019 (COVID-19) Mortality
    Pineles, Beth L.
    Goodman, Katherine E.
    Pineles, Lisa
    O'Hara, Lyndsay M.
    Nadimpalli, Gita
    Magder, Laurence S.
    Baghdadi, Jonathan D.
    Parchem, Jacqueline G.
    Harris, Anthony D.
    OBSTETRICS AND GYNECOLOGY, 2022, 139 (05): : 846 - 854
  • [5] The National Early Warning Score on admission predicts severe disease and in-hospital mortality of the coronavirus disease 2019 Delta variant: A retrospective cohort study
    Endo, Takuro
    Khoujah, Danya
    Motohashi, Takako
    Shinozaki, Tomohiro
    Tsushima, Kenji
    Fujitani, Shigeki
    Shiga, Takashi
    ACUTE MEDICINE & SURGERY, 2023, 10 (01):
  • [6] Azvudine and mortality in patients with coronavirus disease 2019: A retrospective cohort study
    Liu, Bin
    Yang, Mingjin
    Xu, Li
    Li, Yishi
    Cai, Jing
    Xie, Bo
    Zong, Kaican
    Guo, Shuliang
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 124
  • [7] Machine learning for prediction of in-hospital mortality in coronavirus disease 2019 patients: results from an Italian multicenter study
    Vezzoli, Marika
    Inciardi, Riccardo Maria
    Oriecuia, Chiara
    Paris, Sara
    Murillo, Natalia Herrera
    Agostoni, Piergiuseppe
    Ameri, Pietro
    Bellasi, Antonio
    Camporotondo, Rita
    Canale, Claudia
    Carubelli, Valentina
    Carugo, Stefano
    Catagnano, Francesco
    Danzi, Giambattista
    Dalla Vecchia, Laura
    Giovinazzo, Stefano
    Gnecchi, Massimiliano
    Guazzi, Marco
    Iorio, Anita
    La Rovere, Maria Teresa
    Leonardi, Sergio
    Maccagni, Gloria
    Mapelli, Massimo
    Margonato, Davide
    Merlo, Marco
    Monzo, Luca
    Mortara, Andrea
    Nuzzi, Vincenzo
    Pagnesi, Matteo
    Piepoli, Massimo
    Porto, Italo
    Pozzi, Andrea
    Provenzale, Giovanni
    Sarullo, Filippo
    Senni, Michele
    Sinagra, Gianfranco
    Tomasoni, Daniela
    Adamo, Marianna
    Volterrani, Maurizio
    Maroldi, Roberto
    Metra, Marco
    Lombardi, Carlo Mario
    Specchia, Claudia
    JOURNAL OF CARDIOVASCULAR MEDICINE, 2022, 23 (07) : 439 - 446
  • [8] Development and validation of a predictive model of exclusive breastfeeding at hospital discharge: Retrospective cohort study
    Ballesta-Castillejos, Ana
    Gomez-Salgado, Juan
    Rodriguez-Almagro, Julian
    Hernandez-Martinez, Antonio
    INTERNATIONAL JOURNAL OF NURSING STUDIES, 2021, 117
  • [9] Predictive Score for In-Hospital Mortality of Myasthenic Crisis: A Retrospective Chinese Cohort Study
    Lv, Zhiguo
    Zhong, Huahua
    Huan, Xiao
    Song, Jie
    Yan, Chong
    Zhou, Lei
    Lu, Jun
    Zhu, Wenhua
    Lin, Jie
    Qiao, Kai
    Xu, Yafang
    Lu, Jiahong
    Xi, Jianying
    Luo, Sushan
    Zhao, Chongbo
    EUROPEAN NEUROLOGY, 2019, 81 (5-6) : 287 - 293
  • [10] Predictors and Predictive Score of In-Hospital Mortality in Diabetic Ketoacidosis: A Retrospective Cohort Study
    Munsakul, Neera
    Manosroi, Worapaka
    Buranapin, Supawan
    MEDICINA-LITHUANIA, 2024, 60 (11):