MINIMAL PLANES IN ASYMPTOTICALLY FLAT THREE-MANIFOLDS
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Mazet, Laurent
[1
]
Rosenberg, Harold
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tours, Inst Denis Poisson, Univ Orleans, CNRS UMR 7013, Parc Grandmont, F-37200 Tours, FranceUniv Paris Est, LAMA UMR 8050, UPEC, UPEM,CNRS, 61 Ave Gen Gaulle, F-94010 Creteil, France
Rosenberg, Harold
[2
]
机构:
[1] Univ Paris Est, LAMA UMR 8050, UPEC, UPEM,CNRS, 61 Ave Gen Gaulle, F-94010 Creteil, France
[2] Univ Tours, Inst Denis Poisson, Univ Orleans, CNRS UMR 7013, Parc Grandmont, F-37200 Tours, France
In this paper, we improve a result by Chodosh and Ketover [2]. We prove that, in an asymptotically flat 3-manifold M that contains no closed minimal surfaces, fixing q is an element of M and V a 2-plane in TqM there is a properly embedded minimal plane Sigma in M such that q is an element of Sigma and T-q Sigma = V. We also prove that fixing three points in M there is a properly embedded minimal plane passing through these three points.
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Tian, Kevin T.
Samperton, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Samperton, Eric
Wang, Zhenghan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Microsoft Stn Q, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA