MINIMAL PLANES IN ASYMPTOTICALLY FLAT THREE-MANIFOLDS
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Mazet, Laurent
[1
]
Rosenberg, Harold
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tours, Inst Denis Poisson, Univ Orleans, CNRS UMR 7013, Parc Grandmont, F-37200 Tours, FranceUniv Paris Est, LAMA UMR 8050, UPEC, UPEM,CNRS, 61 Ave Gen Gaulle, F-94010 Creteil, France
Rosenberg, Harold
[2
]
机构:
[1] Univ Paris Est, LAMA UMR 8050, UPEC, UPEM,CNRS, 61 Ave Gen Gaulle, F-94010 Creteil, France
[2] Univ Tours, Inst Denis Poisson, Univ Orleans, CNRS UMR 7013, Parc Grandmont, F-37200 Tours, France
In this paper, we improve a result by Chodosh and Ketover [2]. We prove that, in an asymptotically flat 3-manifold M that contains no closed minimal surfaces, fixing q is an element of M and V a 2-plane in TqM there is a properly embedded minimal plane Sigma in M such that q is an element of Sigma and T-q Sigma = V. We also prove that fixing three points in M there is a properly embedded minimal plane passing through these three points.
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USA
Math Sci Res Inst, Berkeley, CA 94720 USAStanford Univ, Dept Math, Stanford, CA 94305 USA
Maximo, Davi
Nunes, Ivaldo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Maranhao, Dept Matemat, Av Portugueses 1966, BR-65085580 Sao Luis, MA, BrazilStanford Univ, Dept Math, Stanford, CA 94305 USA
Nunes, Ivaldo
Smith, Graham
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Ctr Tecnol, Av Athos da Silveira Ramos 149,Bloco C, BR-21941909 Rio De Janeiro, RJ, BrazilStanford Univ, Dept Math, Stanford, CA 94305 USA