Electronic confinement of surface states in a topological insulator nanowire

被引:3
|
作者
Saxena, Ruchi [1 ,2 ]
Grosfeld, Eytan [3 ]
de Graaf, Sebastian E. [4 ]
Lindstrom, Tobias [4 ]
Lombardi, Floriana [5 ]
Deb, Oindrila [1 ,2 ]
Ginossar, Eran [1 ,2 ]
机构
[1] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[2] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
[3] Ben Gurion Univ Negev, Dept Phys, IL-8410501 Beer Sheva, Israel
[4] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
[5] Chalmers Univ Technol, Quantum Device Phys, SE-41296 Gothenburg, Sweden
关键词
INTERFERENCE; TRANSPORT;
D O I
10.1103/PhysRevB.106.035407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the confinement of electronic surface states in a model of a topological insulator nanowire. Spin-momentum locking in the surface states reduces unwanted backscattering in the presence of nonmagnetic disorder and is known to counteract localization for certain values of magnetic flux threading the wire. We show that intentional backscattering can be induced for a range of conditions in the presence of a nanowire constriction. We propose a geometry for a nanowire that involves two constrictions and show that these regions form effective barriers that allow for the formation of a quantum dot. We analyze the zero-temperature noninteracting electronic transport through the device using the Landauer-B??ttiker approach and show how externally applied magnetic flux parallel to the nanowire and electrostatic gates can be used to control the spectrum of the quantum dot and the electronic transport through the surface states of the model device.
引用
收藏
页数:9
相关论文
共 50 条
  • [42] Emergent quantum confinement at topological insulator surfaces
    Bahramy, M. S.
    King, P. D. C.
    de la Torre, A.
    Chang, J.
    Shi, M.
    Patthey, L.
    Balakrishnan, G.
    Hofmann, Ph.
    Arita, R.
    Nagaosa, N.
    Baumberger, F.
    NATURE COMMUNICATIONS, 2012, 3
  • [43] Emergent quantum confinement at topological insulator surfaces
    M.S. Bahramy
    P.D.C King
    A. de la Torre
    J. Chang
    M. Shi
    L. Patthey
    G. Balakrishnan
    Ph. Hofmann
    R. Arita
    N. Nagaosa
    F. Baumberger
    Nature Communications, 3
  • [44] Bound fermion states in pinned vortices in the surface states of a superconducting topological insulator
    Deng, Haoyun
    Bonesteel, N.
    Schlottmann, P.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (03)
  • [45] Electron beam splitting at topological insulator surface states and a proposal for electronic Goos-Hanchen shift measurement
    Ghadiri, Hassan
    Saffarzadeh, Alireza
    PHYSICAL REVIEW B, 2022, 105 (08)
  • [46] Electronic structure and transport on the surface of topological insulator attached to an electromagnetic superlattice
    Wang, Haiyan
    Chen, Xiongwen
    Zhou, Xiaoying
    Zhang, Lebo
    Zhou, Guanghui
    PHYSICA B-CONDENSED MATTER, 2012, 407 (17) : 3664 - 3670
  • [47] Crystalline topological states at a topological insulator junction
    De Beule, C.
    Saniz, R.
    Partoens, B.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 128 : 144 - 151
  • [48] Topological Electronic States on the Surface of a Strained Gapless Semiconductor
    O. V. Kibis
    O. Kyriienko
    I. A. Shelykh
    Semiconductors, 2019, 53 : 1867 - 1869
  • [49] Topological Electronic States on the Surface of a Strained Gapless Semiconductor
    Kibis, O., V
    Kyriienko, O.
    Shelykh, I. A.
    SEMICONDUCTORS, 2019, 53 (14) : 1867 - 1869
  • [50] Fate of topological-insulator surface states under strong disorder
    Schubert, Gerald
    Fehske, Holger
    Fritz, Lars
    Vojta, Matthias
    PHYSICAL REVIEW B, 2012, 85 (20):