A combinatorial property for semigroups of matrices

被引:11
|
作者
d'Alessandro, F [1 ]
Pasku, E
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
[2] Univ Politek Tiranes, Dept Matemat, Tirana, Albania
关键词
D O I
10.1007/s00233-001-0002-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the semigroups of matrices over a commutative semiring. We prove that a semigroup of matrices over a tropical semiring satisfies a combinatorial property called weak permutation property. We consider an application of this result to the Burnside problem for groups.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [21] A PERMUTATION PROPERTY IN SEMIGROUPS
    GUTAN, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (10): : 923 - 924
  • [22] AN INTERPOLATION PROPERTY FOR SEMIGROUPS
    GRILLET, PA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 107 - &
  • [23] The Bergman property for semigroups
    Maltcev, V.
    Mitchell, J. D.
    Ruskuc, N.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 212 - 232
  • [24] A property of transformation semigroups
    Mitsch, H.
    SEMIGROUP FORUM, 2012, 85 (01) : 91 - 96
  • [25] INTERPOLATION PROPERTY IN SEMIGROUPS
    KOLLAR, J
    SEMIGROUP FORUM, 1979, 17 (04) : 337 - 350
  • [26] A property of transformation semigroups
    H. Mitsch
    Semigroup Forum, 2012, 85 : 91 - 96
  • [27] COMBINATORIAL EIGENVALUES OF MATRICES
    MAYBEE, JS
    OLESKY, DD
    TSATSOMEROS, M
    VANDENDRIESSCHE, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 175 : 213 - 224
  • [28] IMMANENTS OF COMBINATORIAL MATRICES
    GOULDEN, IP
    JACKSON, DM
    JOURNAL OF ALGEBRA, 1992, 148 (02) : 305 - 324
  • [29] SOME COMBINATORIAL PROPERTIES OF FREE SEMIGROUPS
    KIM, KH
    PUTCHA, MS
    ROUSH, FW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (DEC): : 397 - 402
  • [30] COMBINATORIAL PROPERTIES OF PARTIAL TRANSFORMATION SEMIGROUPS
    BUTLER, KKH
    BASS, CD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1040 - &