Hypothesis Testing in High-Dimensional Regression Under the Gaussian Random Design Model: Asymptotic Theory

被引:82
|
作者
Javanmard, Adel [1 ]
Montanari, Andrea [1 ,2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
High-dimensional regression; hypothesis testing; uncertainty assessment; p-value; Lasso; LARGE-SYSTEM ANALYSIS; SELECTION; NEIGHBORLINESS; POLYTOPES; BOUNDS; LASSO;
D O I
10.1109/TIT.2014.2343629
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider linear regression in the high-dimensional regime where the number of observations n is smaller than the number of parameters p. A very successful approach in this setting uses l(1)-penalized least squares (also known as the Lasso) to search for a subset of s(0) < n parameters that best explain the data, while setting the other parameters to zero. Considerable amount of work has been devoted to characterizing the estimation and model selection problems within this approach. In this paper, we consider instead the fundamental, but far less understood, question of statistical significance. More precisely, we address the problem of computing p-values for single regression coefficients. On one hand, we develop a general upper bound on the minimax power of tests with a given significance level. We show that rigorous guarantees for earlier methods do not allow to achieve this bound, except in special cases. On the other, we prove that this upper bound is (nearly) achievable through a practical procedure in the case of random design matrices with independent entries. Our approach is based on a debiasing of the Lasso estimator. The analysis builds on a rigorous characterization of the asymptotic distribution of the Lasso estimator and its debiased version. Our result holds for optimal sample size, i.e., when n is at least on the order of s(0) log(p/s(0)). We generalize our approach to random design matrices with independent identically distributed Gaussian rows x(i) similar to N(0, Sigma). In this case, we prove that a similar distributional characterization (termed standard distributional limit) holds for n much larger than s(0)(log p)(2). Our analysis assumes Sigma is known. To cope with unknown Sigma, we suggest a plug-in estimator for sparse covariances Sigma and validate the method through numerical simulations. Finally, we show that for optimal sample size, n being at least of order s(0) log(p/s(0)), the standard distributional limit for general Gaussian designs can be derived from the replica heuristics in statistical physics. This derivation suggests a stronger conjecture than the result we prove, and near-optimality of the statistical power for a large class of Gaussian designs.
引用
收藏
页码:6522 / 6554
页数:33
相关论文
共 50 条
  • [41] Testing Regression Coefficients in High-Dimensional and Sparse Settings
    Kai Xu
    Yan Tian
    Qing Cheng
    Acta Mathematica Sinica, English Series, 2021, 37 : 1513 - 1532
  • [42] Reprint: Hypothesis testing on high dimensional quantile regression
    Chen, Zhao
    Cheng, Vivian Xinyi
    Liu, Xu
    JOURNAL OF ECONOMETRICS, 2024, 239 (02)
  • [43] The Pairwise Gaussian Random Field for High-Dimensional Data Imputation
    Cai, Zhuhua
    Jermaine, Christopher
    Vagena, Zografoula
    Logothetis, Dionysios
    Perez, Luis L.
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 61 - 70
  • [44] HYPOTHESIS TESTING IN HIGH-DIMENSIONAL LINEAR REGRESSION: A NORMAL-REFERENCE SCALE-INVARIANT TEST
    Zhu, Tianming
    Zhang, Liang
    Zhang, Jin-Ting
    STATISTICA SINICA, 2022, 32 : 1857 - 1879
  • [45] A high-dimensional test on linear hypothesis of means under a low-dimensional factor model
    Mingxiang Cao
    Yuanjing He
    Metrika, 2022, 85 : 557 - 572
  • [46] Outlier detection in high-dimensional regression model
    Wang, Tao
    Li, Zhonghua
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (14) : 6947 - 6958
  • [47] A high-dimensional test on linear hypothesis of means under a low-dimensional factor model
    Cao, Mingxiang
    He, Yuanjing
    METRIKA, 2022, 85 (05) : 557 - 572
  • [48] High-dimensional model averaging for quantile regression
    Xie, Jinhan
    Ding, Xianwen
    Jiang, Bei
    Yan, Xiaodong
    Kong, Linglong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (02): : 618 - 635
  • [49] Global hypothesis testing for high-dimensional repeated measures outcomes
    Chi, Yueh-Yun
    Gribbin, Matthew
    Lamers, Yvonne
    Gregory, Jesse F., III
    Muller, Keith E.
    STATISTICS IN MEDICINE, 2012, 31 (08) : 724 - 742
  • [50] Power computation for hypothesis testing with high-dimensional covariance matrices
    Lin, Ruitao
    Liu, Zhongying
    Zheng, Shurong
    Yin, Guosheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 104 : 10 - 23