Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage

被引:49
|
作者
Tang, Fang [1 ]
Cao, Lei [1 ]
Fang, Guiyin [1 ]
机构
[1] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite thermal energy storage materials; Thermal properties; Shape-stabilized; Stearic acid; Titanium dioxide; Building energy conservation; FATTY-ACIDS; SOLAR-ENERGY; PERFORMANCE; PCM; SYSTEMS; SHELL;
D O I
10.1016/j.enbuild.2014.05.030
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, stearic acid (SA)/titanium dioxide (TiO2) composites with different mass ratios were prepared by mixing titania powder with stearic acid-water emulsion. In the composites, the SA performed as phase change material for thermal energy storage, and TiO2 was used as supporting material. The thermal properties of the composites, such as phase change temperature and phase change latent heat, were measured by differential scanning calorimetry (DSC). Fourier transformation infrared spectroscope (FT-IR) analyses indicated that there was no chemical interaction during the preparation process. X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to survey crystalloid phase and microstructure of the SA/TiO2 composites. Besides, the thermal reliability of the composites was investigated by a thermogravimetric analyzer (TGA). The satisfactory SA/TiO2 composite with 33% mass ratio of the SA melts at 53.84 degrees C with a latent heat of 47.82 kJ/kg and solidifies at 53.31 degrees C with a latent heat of 46.60 kJ/kg. Due to its non-inflammability, nontoxicity and good thermal stability, the composite can be used as shape-stabilized phase change materials for building thermal energy storage. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 50 条
  • [21] Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage
    Luo, Yue
    Xiong, Suya
    Huang, Jintao
    Zhang, Feng
    Li, Chongchong
    Min, Yonggang
    Peng, Ruitao
    Liu, Yidong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 231
  • [22] Shape-stabilized phase change materials for thermal energy storage and heat dissipation
    Jiang, Zhuoni
    Liu, Xu
    He, Fangfang
    Li, Yongsheng
    Chen, Zhengguo
    Li, Xiaoan
    Wang, Peng
    He, Guansong
    Yang, Wenbin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 688
  • [23] Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage
    Zhang, Ying
    Zhang, Jiasheng
    Li, Xiangqi
    Wu, Xiao
    JOURNAL OF ENERGY STORAGE, 2019, 21 : 611 - 617
  • [24] Preparation of paraffin/silica–graphene shape-stabilized composite phase change materials for thermal energy storage
    Mahnaz Falahatian
    Fathallah Karimzadeh
    Keyvan Raeissi
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 12846 - 12856
  • [25] Preparation and thermal energy storage properties of polyaniline aerogel-based shape-stabilized composite phase change materials
    Li M.
    Ren S.
    Liu X.
    Tao Z.
    Yang H.
    Huang Z.
    Yang M.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (03): : 458 - 469
  • [26] Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials
    Sun, Zhiming
    Kong, Weian
    Zheng, Shuilin
    Frost, Ray L.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 117 : 400 - 407
  • [27] Shape-stabilized, thermally conductive phase-change composites for thermal energy storage
    Zeng, Guanyue
    Li, Yihang
    Xiong, Yuzhu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (23) : 13839 - 13849
  • [28] Construction strategies and thermal energy storage applications of shape-stabilized phase change materials
    Yan, Jiahui
    Hu, Dechao
    Wang, Zhiqiang
    Ma, Wenshi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (04)
  • [29] Thermal energy storage characteristics of polyacrylic acid/dodecanol/carbon nanofiber composites as thermal conductive shape-stabilized composite phase change materials
    Hekimoglu, Gokhan
    Sari, Ahmet
    Gencel, Osman
    Tyagi, V. V.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (14) : 20873 - 20885
  • [30] Novel green and sustainable shape-stabilized phase change materials for thermal energy storage
    Lai, Wei-Chi
    Cai, Yi-Ting
    Cai, Yan-Lin
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2020, 117 : 257 - 264