Machine Learning-Based Prediction and Optimisation System for Laser Shock Peening

被引:22
|
作者
Mathew, Jino [1 ]
Kshirsagar, Rohit [1 ,2 ]
Zabeen, Suraiya [1 ]
Smyth, Niall [1 ]
Kanarachos, Stratis [1 ]
Langer, Kristina [3 ]
Fitzpatrick, Michael E. [1 ]
机构
[1] Coventry Univ, Fac Engn Environm & Comp, Priory St, Coventry CV1 5FB, W Midlands, England
[2] Brunel Univ, Brunel Innovat Ctr, Kingston Lane, Uxbridge UB8 3PH, Middx, England
[3] US Air Force, Res Lab, Wright Patterson AFB, OH 45433 USA
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 07期
关键词
laser shock peening; modelling; residual stress; Bayesian neural networks; genetic algorithm; optimisation;
D O I
10.3390/app11072888
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Laser shock peening (LSP) as a surface treatment technique can improve the fatigue life and corrosion resistance of metallic materials by introducing significant compressive residual stresses near the surface. However, LSP-induced residual stresses are known to be dependent on a multitude of factors, such as laser process variables (spot size, pulse width and energy), component geometry, material properties and the peening sequence. In this study, an intelligent system based on machine learning was developed that can predict the residual stress distribution induced by LSP. The system can also be applied to "reverse-optimise" the process parameters. The prediction system was developed using residual stress data derived from incremental hole drilling. We used artificial neural networks (ANNs) within a Bayesian framework to develop a robust prediction model validated using a comprehensive set of case studies. We also studied the relative importance of the LSP process parameters using Garson's algorithm and parametric studies to understand the response of the residual stresses in laser peening systems as a function of different process variables. Furthermore, this study critically evaluates the developed machine learning models while demonstrating the potential benefits of implementing an intelligent system in prediction and optimisation strategies of the laser shock peening process.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [32] Machine learning-based prediction of compound profiling matrices
    Perez, Raquel Rodriguez
    Bajorath, Jurgen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [33] Machine Learning-Based Link Prediction for Hotel Network
    Sevim, Yiğit
    Orman, Günce Keziban
    Yöndem, Meltem Turhan
    IAENG International Journal of Computer Science, 2022, 49 (04)
  • [34] Machine Learning-based Pin Accessibility Prediction and Application
    Fang, Shao-Yun
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [35] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505
  • [36] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [37] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [38] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [39] Machine Learning-Based Prediction of Antiferromagnetic Skyrmion Formation
    Saini, Shipra
    Shukla, Alok Kumar
    Nehete, Hemkant
    Bindal, Namita
    Kaushik, Brajesh Kumar
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2774 - 2780
  • [40] Machine learning-based prediction models for postpartum hemorrhage
    Venkatesh, Kartik K.
    Strauss, Robert
    Grotegut, Chad
    Heine, Phillips
    Stamilio, David M.
    Menard, Kathryn
    Jelovsek, Eric
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S175 - S176