Characterization of Intersection Topologies in urban Areas for Vehicle-to-Vehicle Communication

被引:0
|
作者
Tchouankem, Hugues [1 ]
机构
[1] Leibniz Univ Hannover, Inst Commun Technol, Hannover, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The vehicle-to-vehicle communication through exchange of information between vehicles and their neighborhood provides great opportunity to improve road safety and traffic efficiency. Consequently, safety-based V2V applications have to fulfill quality requirements in order to help drivers in critical situations on rural and motorway roads, as well as in urban and inner-city areas. However, due to the inevitable presence of stationary radio shadowing, especially in inner-city intersections, a significant contingent of message transmissions will be susceptible to recurrent signal attenuation caused by building obstructions. In this paper, we characterize the intersection topologies in urban areas by analyzing the presence and placement of buildings around intersections from a data set covering more than twenty five big cities selected worldwide. For the evaluation, we consider real data gathered from a free available online map that provides geographical data and street networks. Moreover, a simple approach allowing a meticulous characterization, and dealing with the high computational time and memory constraints is introduced.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Synthesizing Vehicle-to-Vehicle Communication Trace for VANET Research
    Lv, Feng
    Zhu, Hongzi
    Chang, Shan
    Dong, Mianxiong
    2017 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP), 2017, : 278 - 280
  • [32] Analysis of Vehicle Surroundings Monitoring System Based on Vehicle-to-Vehicle Communication
    Cho, Hong
    Kim, Byeong-Woo
    FRONTIER AND INNOVATION IN FUTURE COMPUTING AND COMMUNICATIONS, 2014, 301 : 763 - 771
  • [33] Performance Analysis of Vehicle-to-Vehicle Communication with Adaptive Modulation
    Novfitri, Aisyah
    Suryani, Titiek
    Suwadi
    2018 ELECTRICAL POWER, ELECTRONICS, COMMUNICATIONS, CONTROLS, AND INFORMATICS SEMINAR (EECCIS), 2018, : 187 - 191
  • [34] A Roadside Scattering Model for the Vehicle-to-Vehicle Communication Channel
    Cheng, Lin
    Stancil, Daniel D.
    Bai, Fan
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (09) : 449 - 459
  • [35] Visible Light Communication Applied on Vehicle-to-vehicle Networks
    Santos, Irlon Silva
    Pinho Ferraz, Pedro Augusto
    2015 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONICS, AND AUTOMOTIVE ENGINEERING (ICMEAE 2015), 2015, : 231 - 235
  • [36] Saving fuel using wireless vehicle-to-vehicle communication
    He, Chaozhe R.
    Orosz, Gabor
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4946 - 4951
  • [37] Implementation of Image Transmission Based on Vehicle-to-Vehicle Communication
    Piao, Changhao
    Ding, Xiaoyue
    He, Jia
    Jang, Soohyun
    Liu, Mingjie
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2022, 18 (02): : 258 - 267
  • [38] Design of hexagon microstrip antenna for vehicle-to-vehicle communication
    Hao Honggang
    Li Jiayu
    Huang Daili
    Luo Wei
    The Journal of China Universities of Posts and Telecommunications, 2016, 23 (04) : 69 - 76
  • [39] An enhanced message verification system for vehicle-to-vehicle communication
    Limbasiya, Trupil
    Das, Debasis
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2018, 21 (03) : 346 - 362
  • [40] Intelligent behaviors through vehicle-to-vehicle and vehicle-to-infrastructure communication
    Garcia, Richard D.
    Sturgeon, Purser
    Brown, Mike
    UNMANNED SYSTEMS TECHNOLOGY XIV, 2012, 8387