Combining and comparing various machine-learning algorithms to improve dissolved gas analysis interpretation

被引:44
|
作者
Senoussaoui, Mohammed El Amine [1 ]
Brahami, Mostefa [1 ]
Fofana, Issouf [2 ]
机构
[1] Djilali Liabes Univ Sidi Bel Abbes, Intelligent Control & Elect Power Syst Lab, ICEPS, Sidi Bel Abbes, Algeria
[2] Univ Quebec Chicoutimi, ViAHT, Chicoutimi, PQ, Canada
关键词
transformer oil; power engineering computing; Bayes methods; decision trees; nearest neighbour methods; pattern classification; fault diagnosis; multilayer perceptrons; chemical engineering computing; DGA fault classification; classification models; bootstrap aggregation; Adaboost algorithm; J48 decision tree; k-nearest neighbour; multilayer perceptron; Bayes network; artificial intelligence techniques; Duval triangle; key gases; ratio method; DGA interpretation; dissolved gas analysis interpretation; machine-learning algorithms;
D O I
10.1049/iet-gtd.2018.0059
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Since the discovery of dissolved gas analysis (DGA), it is considered as a leading technique for the diagnosis of liquid insulated power equipment. However, accurate analysis results can only be achieved if the measured gases closely reflect the actual equipment condition to enable an appropriate interpretation of these gases. In general, conventional techniques such as the ratio method, key gases, and Duval triangle combined or not with artificial intelligence techniques such as machine-learning algorithms are used for DGA interpretation. Here, four well-known machine-learning algorithms are compared in terms of DGA fault classification - Bayes network, multilayer perceptron, k-nearest neighbour, and J48 decision tree. Moreover, the effect of applying ensemble methods such as boosting through the Adaboost algorithm and bootstrap aggregation (bagging) is analysed, and the performances of these algorithms are evaluated. The data for developing classification models was transformed into three forms, other than the raw data. The obtained results clearly presented the efficiency and stability of some algorithms such as the J48 tree and Bayes networks for DGA fault classification, in particular, when the data is appropriately pre-processed. Moreover, the performance of these algorithms was found to consistently improve by integrating the concepts of multiple models or ensemble methods.
引用
收藏
页码:3673 / 3679
页数:7
相关论文
共 50 条
  • [41] A systematic review of the application of machine-learning algorithms in multiple sclerosis
    Vazquez-Marrufo, M.
    Sarrias-Arrabal, E.
    Garcia-Torres, M.
    Martin-Clemente, R.
    Izquierdo, G.
    NEUROLOGIA, 2023, 38 (08): : 577 - 590
  • [42] Prediction of brain maturity in infants using machine-learning algorithms
    Smyser, Christopher D.
    Dosenbach, Nico U. F.
    Smyser, Tara A.
    Snyder, Abraham Z.
    Rogers, Cynthia E.
    Inder, Terrie E.
    Schlaggar, Bradley L.
    Neil, Jeffrey J.
    NEUROIMAGE, 2016, 136 : 1 - 9
  • [43] Identification of human drug targets using machine-learning algorithms
    Kumari, Priyanka
    Nath, Abhigyan
    Chaube, Radha
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 56 : 175 - 181
  • [44] ECG-based machine-learning algorithms for heartbeat classification
    Aziz, Saira
    Ahmed, Sajid
    Alouini, Mohamed-Slim
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [45] Simulated playground for evaluating machine-learning algorithms for bioactivity prediction
    Thompson, Jared
    Schrodl, Stefan
    Mysinger, Michael
    Wallach, Izhar
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [46] Acceleration of Modeling Capability for GDI Spray by Machine-Learning Algorithms
    El Marnissi, Yassine
    Lee, Kyungwon
    Hwang, Joonsik
    FLUIDS, 2024, 9 (11)
  • [47] High Precision Agriculture: An Application Of Improved Machine-Learning Algorithms
    Treboux, Jerome
    Genoud, Dominique
    2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS), 2019, : 103 - 108
  • [48] Colombian Seismic Monitoring Using Advanced Machine-Learning Algorithms
    Castillo, Emmanuel
    Siervo, Daniel
    Prieto, German A.
    SEISMOLOGICAL RESEARCH LETTERS, 2024, 95 (05) : 2971 - 2985
  • [49] New machine-learning algorithms for prediction of Parkinson's disease
    Mandal, Indrajit
    Sairam, N.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2014, 45 (03) : 647 - 666
  • [50] ECG-based machine-learning algorithms for heartbeat classification
    Saira Aziz
    Sajid Ahmed
    Mohamed-Slim Alouini
    Scientific Reports, 11