Atomic resolution with high-eigenmode tapping mode atomic force microscopy

被引:5
|
作者
Severin, N. [1 ,2 ]
Dzhanoev, A. R. [3 ]
Lin, H. [1 ,2 ]
Rauf, A. [1 ,2 ,5 ]
Kirstein, S. [1 ,2 ]
Palma, C. -A. [1 ,2 ,4 ]
Sokolov, I. M. [1 ,2 ]
Rabe, J. P. [1 ,2 ]
机构
[1] Humboldt Univ, Dept Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Humboldt Univ, IRIS Adlershof, Newtonstr 15, D-12489 Berlin, Germany
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
[4] Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China
[5] Pk Syst Europe GmbH, Schildkrotstr 15, D-68199 Mannheim, Germany
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
关键词
TRANSITION-METAL DICHALCOGENIDES; QPLUS SENSORS; TIP MASS; SURFACE; VIBRATIONS; BEAM; AIR;
D O I
10.1103/PhysRevResearch.4.023149
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atomic surface structure imaging is instrumental for the understanding of surface-related phenomena. Here, we show that conventional tapping mode atomic force microscopy with high cantilever eigenmodes and subnanometer amplitudes allow routine atomic imaging at atmospheric pressures. We identify the reasons for failure of atomic resolution imaging employing low eigenmodes. Strong tip-surface interactions cause significant differences between the oscillatory behaviors of the inclination of the cantilever as detected by conventional instruments and of the vertical position of the tip, which prevents correct functioning of instrumental feedback control loops. However, high effective spring constants of high eigenmodes make it possible to overcome the problem. Furthermore, the combination of high effective elastic constants of high cantilever eigenmodes with the high flexibility of the cantilever substantially enhances the imaging stability, thereby universally allowing atomic imaging of solid surfaces in gaseous environments and at elevated temperatures. Demonstrated imaging examples include single sulfur vacancies at the surface of MoS2 crystals imaged at temperatures ranging from room temperature to 250 degrees C and potassium ions on hydrophilic and highly adhesive muscovite mica surfaces. Moreover, the high imaging stability allows knocking atoms off the MoS2 surface by hard tapping, indicating the potential for ultrahigh resolution lithography.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Conformation of curdlan as observed by tapping mode atomic force microscopy
    Jin, Yang
    Zhang, Hongbin
    Yin, Yimei
    Nishinari, Katsuyoshi
    COLLOID AND POLYMER SCIENCE, 2006, 284 (12) : 1371 - 1377
  • [32] From images to interactions:: High-resolution phase imaging in tapping-mode atomic force microscopy
    Stark, M
    Möller, C
    Müller, DJ
    Guckenberger, R
    BIOPHYSICAL JOURNAL, 2001, 80 (06) : 3009 - 3018
  • [33] VISCOELASTICITY OF LIVING CELLS ALLOWS HIGH-RESOLUTION IMAGING BY TAPPING MODE ATOMIC-FORCE MICROSCOPY
    PUTMAN, CAJ
    VANDERWERF, KO
    DEGROOTH, BG
    VANHULST, NF
    GREVE, J
    BIOPHYSICAL JOURNAL, 1994, 67 (04) : 1749 - 1753
  • [34] High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy
    Sahin, Ozgur
    Erina, Natalia
    NANOTECHNOLOGY, 2008, 19 (44)
  • [35] Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces
    Möller, C
    Allen, M
    Elings, V
    Engel, A
    Müller, DJ
    BIOPHYSICAL JOURNAL, 1999, 77 (02) : 1150 - 1158
  • [36] Can atomic force microscopy achieve atomic resolution in contact mode?
    Jarvis, MR
    Pérez, R
    Payne, MC
    PHYSICAL REVIEW LETTERS, 2001, 86 (07) : 1287 - 1290
  • [37] Basins of attraction of tapping mode atomic force microscopy with capillary force interactions
    Hashemi, Nastaran
    Montazami, Reza
    APPLIED PHYSICS LETTERS, 2009, 94 (25)
  • [38] Lithography by tapping-mode atomic force microscopy with electrostatic force modulation
    Kim, BI
    Pi, UH
    Khim, ZG
    Yoon, S
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1): : S95 - S98
  • [39] The nonlinear dynamics of tapping mode atomic force microscopy with capillary force interactions
    Hashemi, N.
    Dankowicz, H.
    Paul, M.R.
    Journal of Applied Physics, 2008, 103 (09):
  • [40] The nonlinear dynamics of tapping mode atomic force microscopy with capillary force interactions
    Hashemi, N.
    Dankowicz, H.
    Paul, M. R.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (09)