MRI segmentation using Fuzzy C-means and radial basis function neural networks

被引:1
|
作者
Rasooli, A. H. [1 ]
Ashtiyani, M. [2 ]
Birgani, P. M. [1 ]
Amiri, S. [1 ]
Mirmohammadi, P. [2 ]
Deevband, M. R. [2 ]
机构
[1] Univ Tehran Med Sci, Dept Med Phys & Biomed Engn, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Fac Med, Dept Biomed Engn & Med Phys, Tehran, Iran
来源
CURRENT SCIENCE | 2018年 / 115卷 / 06期
关键词
Fuzzy C-means; magnetic resonance imaging; neural networks; segmentation; radial basis function; BRAIN IMAGES; CLASSIFIER; SYSTEM;
D O I
10.18520/cs/v115/i6/1091-1097
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Image segmentation is one of the major preprocessing steps of magnetic resonance imaging (MRI) analysis in many medical and research applications. Accurate differentiation between three major soft tissues of the brain - grey matter, white matter and cerebrospinal fluid - is a key step in structural and functional brain analysis, visualization of the brain's anatomical structures and measurement, diagnosis of neurodegenerative disorders and image-guided interventions as well as surgical planning. We propose a new methodological approach in segmentation of MRI images of the brain structure. Although various methods for MRI segmentation have been proposed, improvement of soft, automatic and precise MRI segmentation methods are worth a try. The proposed method has almost the same results as those from recent efforts in this field. However, it performs better in the presence of noise and RF-filed inhomogeneity.
引用
收藏
页码:1091 / 1097
页数:7
相关论文
共 50 条
  • [31] Recent Advancements in Fuzzy C-means Based Techniques for Brain MRI Segmentation
    Latif, Ghazanfar
    Alghazo, Jaafar
    Sibai, Fadi N.
    Iskandar, D. N. F. Awang
    Khan, Adil H.
    CURRENT MEDICAL IMAGING, 2021, 17 (08) : 917 - 930
  • [32] Performance Analysis of Fuzzy C-Means Clustering Methods for MRI Image Segmentation
    Choudhry, Mahipal Singh
    Kapoor, Rajiv
    TWELFTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2016 / TWELFTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2016 / TWELFTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2016, 2016, 89 : 749 - 758
  • [33] Brain MRI image segmentation based on improved Fuzzy C-means algorithm
    Sun, Shiling
    Yan, Shuxun
    Wang, Ying
    Li, Yun
    2016 INTERNATIONAL CONFERENCE ON SMART CITY AND SYSTEMS ENGINEERING (ICSCSE), 2016, : 503 - 505
  • [34] Directional weighted spatial fuzzy C-means for segmentation of brain MRI images
    Khan, Sajid Ullah
    Ullah, Imran
    Ahmed, Imran
    Imran, Ali
    Ullah, Najeeb
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2019, 27 (06) : 1087 - 1099
  • [35] Automatic Unsupervised Segmentation Methods for MRI Based on Modified Fuzzy C-Means
    Xiao, Kai
    Ho, Sooi Hock
    Hassanien, Aboul Ella
    FUNDAMENTA INFORMATICAE, 2008, 87 (3-4) : 465 - 481
  • [36] Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
    Adhikari, Sudip Kumar
    Sing, Jamuna Kanta
    Basu, Dipak Kumar
    Nasipuri, Mita
    APPLIED SOFT COMPUTING, 2015, 34 : 758 - 769
  • [37] Segmentation for brain MRI image based on the fuzzy c-means clustering algorithm
    Yin, Xi
    Li, Yimin
    Li, Feng
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1177 - 1182
  • [38] A Fuzzy C-Means Algorithm for Fingerprint Segmentation
    Ferreira, Pedro M.
    Sequeira, Ana F.
    Rebelo, Ana
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2015), 2015, 9117 : 245 - 252
  • [39] Medical Image Segmentation With Fuzzy C-Means and Kernelized Fuzzy C-Means Hybridized on PSO and QPSO
    Venkatesan, Anusuya
    Parthiban, Latha
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2017, 14 (01) : 53 - 59
  • [40] Sodar image segmentation by fuzzy c-means
    Mukherjee, DP
    Pal, P
    Das, J
    SIGNAL PROCESSING, 1996, 54 (03) : 295 - 301