Numerical method with high order accuracy for solving a anomalous subdiffusion equation

被引:0
|
作者
Chen, Y. [1 ]
Chen, Chang-Ming [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Anomalous subdiffusion equation; Numerical method with high order accuracy; Convergence; Stability; Solvability; Fourier analysis; FRACTIONAL DIFFUSION EQUATION; FINITE-DIFFERENCE SCHEME; SUB-DIFFUSION; BOUNDARY-CONDITIONS; STABILITY; SYSTEMS;
D O I
10.1007/s11075-015-0062-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical method with second order temporal accuracy and fourth order spatial accuracy is developed to solve a anomalous subdiffusion equation; by Fourier analysis, the convergence, stability and solvability of the numerical method are analyzed; the theoretical results are strongly supported by the numerical experiment.
引用
收藏
页码:687 / 703
页数:17
相关论文
共 50 条
  • [22] A Collocation Method Based on Reproducing Kernel for a Modified Anomalous Subdiffusion Equation
    Jiang, Wei
    Chen, Zhong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 289 - 300
  • [23] A NEW NUMERICAL METHOD FOR SOLVING TWO-DIMENSIONAL VARIABLE-ORDER ANOMALOUS SUB-DIFFUSION EQUATION
    Jiang, Wei
    Guo, Beibei
    THERMAL SCIENCE, 2016, 20 : S701 - S710
  • [24] A high-order numerical scheme using orthogonal spline collocation for solving the two-dimensional fractional reaction-subdiffusion equation
    Xu, Xiaoyong
    Xu, Da
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [25] Numerical study of subdiffusion equation
    Lewandowska, Katarzyna D.
    Kosztolowicz, Tadeusz
    ACTA PHYSICA POLONICA B, 2007, 38 (05): : 1847 - 1854
  • [26] Numerical approximation for a variable-order nonlinear reaction–subdiffusion equation
    Chang-Ming Chen
    F. Liu
    I. Turner
    V. Anh
    Y. Chen
    Numerical Algorithms, 2013, 63 : 265 - 290
  • [27] Numerical method for two dimensional fractional reaction subdiffusion equation
    H. Huang
    X. Cao
    The European Physical Journal Special Topics, 2013, 222 : 1961 - 1973
  • [28] Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method
    Saenko, Viacheslav V.
    Kovalnogov, Vladislav N.
    Fedorov, Ruslan V.
    Generalov, Dmitry A.
    Tsvetova, Ekaterina V.
    MATHEMATICS, 2022, 10 (03)
  • [29] Numerical method for two dimensional fractional reaction subdiffusion equation
    Huang, H.
    Cao, X.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1961 - 1973
  • [30] HIGH-ORDER NUMERICAL METHOD FOR SOLVING A SPACE DISTRIBUTED-ORDER TIME-FRACTIONAL DIFFUSION EQUATION
    李景
    杨莹莹
    姜英军
    封利波
    郭柏灵
    ActaMathematicaScientia, 2021, 41 (03) : 801 - 826