Numerical investigation of thermal behaviors in lithium-ion battery stack discharge

被引:134
|
作者
Liu, Rui [1 ]
Chen, Jixin [2 ]
Xun, Jingzhi [1 ]
Jiao, Kui [1 ]
Du, Qing [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金;
关键词
Lithium ion battery stack; Thermal management; Discharge rate; Phase-change material; Temperature distribution; MANAGEMENT; MODEL; SIMULATION; UNIFORMITY; DESIGN; PACKS;
D O I
10.1016/j.apenergy.2014.07.024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:288 / 297
页数:10
相关论文
共 50 条
  • [31] Numerical investigation on thermal runaway propagation and prevention in cell-to-chassis lithium-ion battery system
    Wang, Gongquan
    Gao, Wei
    He, Xu
    Peng, Rongqi
    Zhang, Yue
    Dai, Xinyi
    Ping, Ping
    Kong, Depeng
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [32] Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions
    Kong, Depeng
    Wang, Gongquan
    Ping, Ping
    Wen, Jenifer
    APPLIED THERMAL ENGINEERING, 2021, 189
  • [33] Modeling the effect of aging on the electrical and thermal behaviors of a lithium-ion battery during constant current charge and discharge cycling
    Yi, Jaeshin
    Koo, Boram
    Shin, Chee Burm
    Han, Taeyoung
    Park, Seongyong
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 99 : 31 - 39
  • [34] Investigation of Lithium Tetrafluorooxalatophosphate as a Lithium-Ion Battery Electrolyte
    Xu, Mengqing
    Xiao, Ang
    Li, Weishan
    Lucht, Brett L.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (08) : A155 - A158
  • [35] Numerical study on thermal behavior and a liquid cooling strategy for lithium-ion battery
    Xu, Wenjun
    Hu, Peng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7645 - 7659
  • [36] Theoretical and Numerical Analysis for Thermal Runaway Front Velocity of Lithium-ion Battery
    Zhang, Fangshu
    Feng, Xuning
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (12): : 3771 - 3776
  • [37] An experimental and numerical examination on the thermal inertia of a cylindrical lithium-ion power battery
    Wang, Shixue
    Li, Kaixiang
    Tian, Yuan
    Wang, Junyao
    Wu, Yukang
    Ji, Shan
    APPLIED THERMAL ENGINEERING, 2019, 154 : 676 - 685
  • [38] Numerical Study on Heat Generation Characteristics of Charge and Discharge Cycle of the Lithium-Ion Battery
    Tan, Yuxuan
    Li, Yue
    Gu, Yueqing
    Liu, Wenjie
    Fang, Juan
    Pan, Chongchao
    ENERGIES, 2024, 17 (01)
  • [39] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Cheng, Chonglv
    Kong, Fanfu
    Shan, Conghui
    Xu, Baopeng
    FIRE TECHNOLOGY, 2023, 59 (03) : 1073 - 1087
  • [40] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Chonglv Cheng
    Fanfu Kong
    Conghui Shan
    Baopeng Xu
    Fire Technology, 2023, 59 : 1073 - 1087