Characteristics of Graphite Felt Electrodes Treated by Atmospheric Pressure Plasma Jets for an All-Vanadium Redox Flow Battery

被引:13
|
作者
Jirabovornwisut, Tossaporn [1 ]
Singh, Bhupendra [2 ,3 ]
Chutimasakul, Apisada [1 ]
Chang, Jung-Hsien [4 ]
Chen, Jian-Zhang [4 ]
Arpornwichanop, Amornchai [1 ]
Chen, Yong-Song [2 ,3 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Ctr Excellence Proc & Energy Syst Engn, Dept Chem Engn, Bangkok 10330, Thailand
[2] Natl Chung Cheng Univ, Dept Mech Engn, Chiayi 62102, Chiayi County, Taiwan
[3] Natl Chung Cheng Univ, Adv Inst Mfg High Tech Innovat, Chiayi 62102, Chiayi County, Taiwan
[4] Natl Taiwan Univ, Grad Inst Appl Mech, Taipei 10617, Taiwan
关键词
all-vanadium redox flow battery; graphite felt; atmospheric pressure plasma jets; limiting current density; overpotential; PERFORMANCE;
D O I
10.3390/ma14143847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In an all-vanadium redox flow battery (VRFB), redox reaction occurs on the fiber surface of the graphite felts. Therefore, the VRFB performance highly depends on the characteristics of the graphite felts. Although atmospheric pressure plasma jets (APPJs) have been applied for surface modification of graphite felt electrode in VRFBs for the enhancement of electrochemical reactivity, the influence of APPJ plasma reactivity and working temperature (by changing the flow rate) on the VRFB performance is still unknown. In this work, the performance of the graphite felts with different APPJ plasma reactivity and working temperatures, changed by varying the flow rates (the conditions are denoted as APPJ temperatures hereafter), was analyzed and compared with those treated with sulfuric acid. X-ray photoelectron spectroscopy (XPS) indicated that the APPJ treatment led to an increase in O-/N-containing functional groups on the GF surface to similar to 21.0% as compared to similar to 15.0% for untreated GF and 18.0% for H2SO4-treated GF. Scanning electron microscopy (SEM) indicated that the surface morphology of graphite felt electrodes was still smooth, and no visible changes were detected after oxidation in the sulfuric acid or after APPJ treatment. The polarization measurements indicated that the APPJ treatment increased the limiting current densities from 0.56 A center dot cm(-2) for the GFs treated by H2SO4 to 0.64, 0.68, and 0.64 A center dot cm(-2), respectively, for the GFs APPJ-treated at 450, 550, and 650 degrees C, as well as reduced the activation overpotential when compared with the H2SO4-treated electrode. The electrochemical charge/discharge measurements showed that the APPJ treatment temperature of 550 degrees C gave the highest energy efficiency of 83.5% as compared to 72.0% with the H2SO4 treatment.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effect of Compression Ratio of Graphite Felts on the Performance of an All-Vanadium Redox Flow Battery
    Hsieh, Chin-Lung
    Tsai, Po-Hong
    Hsu, Ning-Yih
    Chen, Yong-Song
    ENERGIES, 2019, 12 (02)
  • [22] Study on Hydrogen Evolution Reaction at a Graphite Electrode in the All-Vanadium Redox Flow Battery
    Chen, Fuyu
    Liu, Jianguo
    Chen, Hui
    Yan, Chuanwei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (04): : 3750 - 3764
  • [23] Characteristics of the all-vanadium redox flow battery using ammonium metavanadate electrolyte
    Bo-Young Jung
    Cheol-Hwi Ryu
    Gab-Jin Hwang
    Korean Journal of Chemical Engineering, 2022, 39 : 2361 - 2367
  • [24] Characteristics of the all-vanadium redox flow battery using ammonium metavanadate electrolyte
    Jung, Bo-Young
    Ryu, Cheol-Hwi
    Hwang, Gab-Jin
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (09) : 2361 - 2367
  • [25] Characteristics of the all-vanadium redox flow battery using anion exchange membrane
    Choi, Ho-Sang
    Oh, Yong-Hwan
    Ryu, Cheol-Hwi
    Hwang, Gab-Jin
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (06) : 2920 - 2925
  • [26] Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery
    Wang, W. H.
    Wang, X. D.
    ELECTROCHIMICA ACTA, 2007, 52 (24) : 6755 - 6762
  • [27] A numerical evaluation of felt electrodes in a vanadium redox flow battery
    Tas, Mert
    Alphonse, Phil-Jacques
    Elden, Gulsah
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2023, 20 (11) : 1119 - 1136
  • [28] Effect of flow field on the performance of an all-vanadium redox flow battery
    Kumar, S.
    Jayanti, S.
    JOURNAL OF POWER SOURCES, 2016, 307 : 782 - 787
  • [29] Analysis of Concentration Overpotential in an All-Vanadium Redox Flow Battery
    Murthy, Sri Krishna
    Sharma, Ashwini Kumar
    Choo, Clement
    Birgersson, Erik
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1746 - A1752
  • [30] Modeling of an All-Vanadium Redox Flow Battery and Optimization of Flow Rates
    Xiong Binyu
    Zhao Jiyun
    Li Jinbin
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,