Sparse, Interpretable and Transparent Predictive Model Identification for Healthcare Data Analysis

被引:5
|
作者
Wei, Hua-Liang [1 ,2 ]
机构
[1] Univ Sheffield, Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Univ Sheffield, INSIGNEO Inst Silico Med, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
System identification; Data-driven modelling; Prediction; Healthcare; Machine learning; NARMAX; LEAST-SQUARES REGRESSION; IMPACTS; INDEX;
D O I
10.1007/978-3-030-20521-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven modelling approaches play an indispensable role in analyzing and understanding complex processes. This study proposes a type of sparse, interpretable and transparent (SIT) machine learning model, which can be used to understand the dependent relationship of a response variable on a set of potential explanatory variables. An ideal candidate for such a SIT representation is the well-known NARMAX (nonlinear autoregressive moving average with exogenous inputs) model, which can be established from measured input and output data of the system of interest, and the final refined model is usually simple, parsimonious and easy to interpret. The performance of the proposed SIT models is evaluated through two real healthcare datasets.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 50 条
  • [21] Predictive Analysis for Healthcare Sector Using Big data Technology
    Ravindran, Nambiar Jyothi
    Gopalakrishnan, Prakash
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 326 - 331
  • [22] Data Completion, Model Correction and Enrichment Based on Sparse Identification and Data Assimilation
    Di Lorenzo, Daniele
    Champaney, Victor
    Germoso, Claudia
    Cueto, Elias
    Chinesta, Francisco
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [23] An approach for integrating multimodal omics data into sparse and interpretable models
    Dong, Yixing
    Gottardo, Raphael
    CELL REPORTS METHODS, 2024, 4 (02):
  • [24] Predictive Learning with Sparse Heterogeneous Data
    Cherkassky, Vladimir
    Cai, Feng
    Liang, Lichen
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 3155 - +
  • [25] Sparse grids: a new predictive modelling method for the analysis of geographic data
    Laffan, SW
    Nielsen, OM
    Silcock, H
    Hegland, M
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2005, 19 (03) : 267 - 292
  • [26] Data-driven identification of predictive risk biomarkers for subgroups of osteoarthritis using interpretable machine learning
    Rikke Linnemann Nielsen
    Thomas Monfeuga
    Robert R. Kitchen
    Line Egerod
    Luis G. Leal
    August Thomas Hjortshøj Schreyer
    Frederik Steensgaard Gade
    Carol Sun
    Marianne Helenius
    Lotte Simonsen
    Marianne Willert
    Abd A. Tahrani
    Zahra McVey
    Ramneek Gupta
    Nature Communications, 15
  • [27] Data-driven identification of predictive risk biomarkers for subgroups of osteoarthritis using interpretable machine learning
    Nielsen, Rikke Linnemann
    Monfeuga, Thomas
    Kitchen, Robert R.
    Egerod, Line
    Leal, Luis G.
    Schreyer, August Thomas Hjortshoj
    Gade, Frederik Steensgaard
    Sun, Carol
    Helenius, Marianne
    Simonsen, Lotte
    Willert, Marianne
    Tahrani, Abd A.
    McVey, Zahra
    Gupta, Ramneek
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [28] Numerical analysis of sparse initial data identification for parabolic problems
    Leykekhman, Dmitriy
    Vexler, Boris
    Walter, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1139 - 1180
  • [29] An interpretable risk prediction model for healthcare with pattern attention
    Kamal, Sundreen Asad
    Yin, Changchang
    Qian, Buyue
    Zhang, Ping
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (Suppl 11)
  • [30] Interpretable Data-Driven Model Predictive Control of Building Energy Systems using SHAP
    Henkel, Patrick
    Kasperski, Tobias
    Stoffel, Phillip
    Mueller, Dirk
    6TH ANNUAL LEARNING FOR DYNAMICS & CONTROL CONFERENCE, 2024, 242 : 222 - 234