Sparse, Interpretable and Transparent Predictive Model Identification for Healthcare Data Analysis

被引:5
|
作者
Wei, Hua-Liang [1 ,2 ]
机构
[1] Univ Sheffield, Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Univ Sheffield, INSIGNEO Inst Silico Med, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
System identification; Data-driven modelling; Prediction; Healthcare; Machine learning; NARMAX; LEAST-SQUARES REGRESSION; IMPACTS; INDEX;
D O I
10.1007/978-3-030-20521-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven modelling approaches play an indispensable role in analyzing and understanding complex processes. This study proposes a type of sparse, interpretable and transparent (SIT) machine learning model, which can be used to understand the dependent relationship of a response variable on a set of potential explanatory variables. An ideal candidate for such a SIT representation is the well-known NARMAX (nonlinear autoregressive moving average with exogenous inputs) model, which can be established from measured input and output data of the system of interest, and the final refined model is usually simple, parsimonious and easy to interpret. The performance of the proposed SIT models is evaluated through two real healthcare datasets.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 50 条
  • [1] INPREM: An Interpretable and Trustworthy Predictive Model for Healthcare
    Zhang, Xianli
    Qian, Buyue
    Cao, Shilei
    Li, Yang
    Chen, Hang
    Zheng, Yefeng
    Davidson, Ian
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 450 - 460
  • [2] Sparse, Predictive, and Interpretable Functional Connectomics with UoILasso
    Sachdeva, Pratik S.
    Bhattacharyya, Sharmodeep
    Bouchard, Kristofer E.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1965 - 1968
  • [3] Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
    Kaiser, E.
    Kutz, J. N.
    Brunton, S. L.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2219):
  • [4] RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism
    Choi, Edward
    Bahadori, Mohammad Taha
    Kulas, Joshua A.
    Schuetz, Andy
    Stewart, Walter F.
    Sun, Jimeng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [5] Interpretable sparse SIR for functional data
    Victor Picheny
    Rémi Servien
    Nathalie Villa-Vialaneix
    Statistics and Computing, 2019, 29 : 255 - 267
  • [6] An interpretable ensemble structure with a non-iterative training algorithm to improve the predictive accuracy of healthcare data analysis
    Izonin, Ivan
    Tkachenko, Roman
    Yemets, Kyrylo
    Havryliuk, Myroslav
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Interpretable sparse SIR for functional data
    Picheny, Victor
    Servien, Remi
    Villa-Vialaneix, Nathalie
    STATISTICS AND COMPUTING, 2019, 29 (02) : 255 - 267
  • [8] INSIDER: Interpretable sparse matrix decomposition for RNA expression data analysis
    Zhao, Kai
    Huang, Sen
    Lin, Cuichan
    Sham, Pak Chung
    So, Hon-Cheong
    Lin, Zhixiang
    PLOS GENETICS, 2024, 20 (03):
  • [9] Nonparametric predictive model for sparse and irregular longitudinal data
    Wang, Shixuan
    Kim, Seonjin
    Cho, Hyunkeun Ryan
    Chang, Won
    BIOMETRICS, 2024, 80 (01)
  • [10] Interpretable sparse identification of a bistable nonlinear energy sink
    Liu, Qinghua
    Cao, Junyi
    Zhang, Ying
    Zhao, Zhenyang
    Kerschen, Gaetan
    Jing, Xingjian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 193