Comparisons of the Semi-Smooth Newton Method for Solving Contact Problems in 2D and 3D

被引:0
|
作者
Motyckova, Kristina [1 ]
Kucera, Radek [1 ]
Markopoulos, Alexandros [1 ]
Satek, Vaclav [1 ]
机构
[1] VSB TU Ostrava, IT4Innovat, 17 Listopadu 15-2172, Ostrava 70833, Czech Republic
关键词
CONVERGENCE RATE; ALGORITHM;
D O I
10.1063/1.4992517
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The semi-smooth Newton method is used for solving contact problems with the Tresca friction in 2D and 3D. The implementations related to the active set optimization algorithms are shown. Numerical experiments illustrate theoretical results.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] New second-order cone linear complementarity formulation and semi-smooth Newton algorithm for finite element analysis of 3D frictional contact problem
    Zhang, H. W.
    Li, J. Y.
    Pan, S. H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (1-4) : 77 - 88
  • [22] Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization
    Gitterle, Markus
    Popp, Alexander
    Gee, Michael W.
    Wall, Wolfgang A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (05) : 543 - 571
  • [23] A semi-smooth Newton and Primal-Dual Active Set method for Non-Smooth Contact Dynamics
    Abide, Stephane
    Barboteu, Mikael
    Cherkaoui, Soufiane
    Dumont, Serge
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 387
  • [24] A leapfrog semi-smooth Newton-multigrid method for semilinear parabolic optimal control problems
    Liu, Jun
    Xiao, Mingqing
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) : 69 - 95
  • [25] A leapfrog semi-smooth Newton-multigrid method for semilinear parabolic optimal control problems
    Jun Liu
    Mingqing Xiao
    Computational Optimization and Applications, 2016, 63 : 69 - 95
  • [26] An algorithm for solving 3D contact problems with friction
    Kucera, R
    Haslinger, J
    Dostál, Z
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 217 - 220
  • [27] Comparisons of 2D and 3D simulations of mass transfer in semi-detached binaries
    Bisikalo, DV
    Boyarchuk, AA
    Chechetkin, VM
    Kuznetsov, OA
    Molteni, D
    ASTRONOMY REPORTS, 1999, 43 (12) : 797 - 807
  • [28] The method of fundamental solutions for 2D and 3D Stokes problems
    Young, DL
    Jane, SJ
    Fan, CM
    Murugesan, K
    Tsai, CC
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) : 1 - 8
  • [29] Rubberband algorithms for solving various 2D or 3D shortest path problems
    Li, Fajie
    Klette, Reinhard
    ICCTA 2007: INTERNATIONAL CONFERENCE ON COMPUTING: THEORY AND APPLICATIONS, PROCEEDINGS, 2007, : 9 - +
  • [30] A Scalable TFETI Based Algorithm for 2D and 3D Frictionless Contact Problems
    Dostal, Zdenek
    Brzobohaty, Tomas
    Kozubek, Tomas
    Markopoulos, Alex
    Vondrak, Vit
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 92 - +