MGP-AttTCN: An interpretable machine learning model for the prediction of sepsis

被引:20
|
作者
Rosnati, Margherita [1 ]
Fortuin, Vincent [2 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
来源
PLOS ONE | 2021年 / 16卷 / 05期
关键词
INTERNATIONAL CONSENSUS DEFINITIONS; SEPTIC SHOCK; CLINICAL-CRITERIA; INTENSIVE-CARE; MORTALITY; NETWORKS; IMPACT;
D O I
10.1371/journal.pone.0251248
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With a mortality rate of 5.4 million lives worldwide every year and a healthcare cost of more than 16 billion dollars in the USA alone, sepsis is one of the leading causes of hospital mortality and an increasing concern in the ageing western world. Recently, medical and technological advances have helped re-define the illness criteria of this disease, which is otherwise poorly understood by the medical society. Together with the rise of widely accessible Electronic Health Records, the advances in data mining and complex nonlinear algorithms are a promising avenue for the early detection of sepsis. This work contributes to the research effort in the field of automated sepsis detection with an open-access labelling of the medical MIMIC-III data set. Moreover, we propose MGP-AttTCN: a joint multitask Gaussian Process and attention-based deep learning model to early predict the occurrence of sepsis in an interpretable manner. We show that our model outperforms the current state-of-the-art and present evidence that different labelling heuristics lead to discrepancies in task difficulty. For instance, when predicting sepsis five hours prior to onset on our new realistic labels, our proposed model achieves an area under the ROC curve of 0.660 and an area under the PR curve of 0.483, whereas the (less interpretable) previous state-of-the-art model (MGP-TCN) achieves 0.635 AUROC and 0.460 AUPR and the popular commercial InSight model achieves 0.490 AUROC and 0.359 AUPR.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Sepsis mortality prediction with Machine Learning Tecniques
    Perez-Tome, Javier Carrillo
    Parron-Carreno, Tesifon
    Castano-Fernandez, Ana Belen
    Nievas-Soriano, Bruno Jose
    Castro-Luna, Gracia
    MEDICINA INTENSIVA, 2024, 48 (10) : 584 - 593
  • [42] Interpretable Machine Learning Modeling for Ischemic Stroke Outcome Prediction
    Jabal, Mohamed Sobhi
    Joly, Olivier
    Kallmes, David
    Harston, George
    Rabinstein, Alejandro
    Huynh, Thien
    Brinjikji, Waleed
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [43] Prediction of Diabetes at Early Stage using Interpretable Machine Learning
    Islam, Mohammad Sajidul
    Alam, Md Minul
    Ahamed, Afsana
    Meerza, Syed Imran Ali
    SOUTHEASTCON 2023, 2023, : 261 - 265
  • [44] Machine Learning Prediction of Human Interpretable Local Features on Echocardiogram
    Ouyang, David
    Ghorbani, Amirata
    Chen, Jonathan H.
    Harrington, Robert A.
    Ashley, Euan A.
    Liang, David
    Zou, James
    CIRCULATION, 2019, 140
  • [45] Accurate band gap prediction based on an interpretable ?-machine learning
    Zhang, Lingyao
    Su, Tianhao
    Li, Musen
    Jia, Fanhao
    Hu, Shuobo
    Zhang, Peihong
    Ren, Wei
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [46] Interpretable Stroke Risk Prediction Using Machine Learning Algorithms
    Zafeiropoulos, Nikolaos
    Mavrogiorgou, Argyro
    Kleftakis, Spyridon
    Mavrogiorgos, Konstantinos
    Kiourtis, Athanasios
    Kyriazis, Dimosthenis
    INTELLIGENT SUSTAINABLE SYSTEMS, WORLDS4 2022, VOL 2, 2023, 579 : 647 - 656
  • [47] Prediction of the Fatigue Strength of Steel Based on Interpretable Machine Learning
    Liu, Chengcheng
    Wang, Xuandong
    Cai, Weidong
    Yang, Jiahui
    Su, Hang
    MATERIALS, 2023, 16 (23)
  • [48] Interpretable Machine Learning Models for Prediction of UHPC Creep Behavior
    Zhu, Peng
    Cao, Wenshuo
    Zhang, Lianzhen
    Zhou, Yongjun
    Wu, Yuching
    Ma, Zhongguo John
    BUILDINGS, 2024, 14 (07)
  • [49] Interpretable machine learning models for concrete compressive strength prediction
    Hoang, Huong-Giang Thi
    Nguyen, Thuy-Anh
    Ly, Hai-Bang
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2025, 10 (01)
  • [50] Interpretable machine learning prediction of all-cause mortality
    Qiu, Wei
    Chen, Hugh
    Dincer, Ayse Berceste
    Lundberg, Scott
    Kaeberlein, Matt
    Lee, Su-In
    COMMUNICATIONS MEDICINE, 2022, 2 (01):