On the identifiability of measurement error in the bifurcating autoregressive model

被引:4
|
作者
Huggins, R [1 ]
机构
[1] LA TROBE UNIV,DEPT STAT,BUNDOORA,VIC 3083,AUSTRALIA
基金
澳大利亚研究理事会;
关键词
identifiable parameters; bifurcating autoregressive model; computer algebra;
D O I
10.1016/0167-7152(95)00038-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Huggins and Staudte (1994) considered a mixed linear model for the analysis of cell lineage data and in models for the covariance structure which involved measurement error, it was not immediately clear that the parameters involved were identifiable. Whilst a numerical examination of the Hessian matrix at the estimated parameter values gave some reassurance, this was not theoretically satisfying. Here a matrix formulation of the robust estimating functions of Huggins (1993a, b) as applied in Huggins and Staudte (1994), which include the maximum likelihood estimating functions under the assumption of multivariate normality as a special case, is given along with a direct proof linking identifiability expressed in terms of the estimating functions with the information matrix or its analogue in more general settings. The resulting conditions on the estimating functions may then be checked globally using computer algebra, suggesting a method for establishing identifiability in mixed linear models in general.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 50 条
  • [21] INCORPORATING MEASUREMENT ERROR IN THE ESTIMATION OF AUTOREGRESSIVE MODELS FOR LONGITUDINAL DATA
    SCHMID, CH
    SEGAL, MR
    ROSNER, B
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 42 (1-2) : 1 - 18
  • [22] Incorporating measurement error in n=1 psychological autoregressive modeling
    Schuurman, Noemi K.
    Houtveen, Jan H.
    Hamaker, Ellen L.
    FRONTIERS IN PSYCHOLOGY, 2015, 6
  • [23] Identifiability of structural singular vector autoregressive models
    Funovits, Bernd
    Braumann, Alexander
    JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (04) : 431 - 441
  • [24] Asymptotic results for random coefficient bifurcating autoregressive processes
    Blandin, Vassili
    STATISTICS, 2014, 48 (06) : 1202 - 1232
  • [25] Estimation of functional-coefficient autoregressive models with measurement error
    Geng, Pei
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [26] A Phase Transition for Large Values of Bifurcating Autoregressive Models
    Bansaye, Vincent
    Bitseki Penda, S. Valere
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (04) : 2081 - 2116
  • [27] A Phase Transition for Large Values of Bifurcating Autoregressive Models
    Vincent Bansaye
    S. Valère Bitseki Penda
    Journal of Theoretical Probability, 2021, 34 : 2081 - 2116
  • [28] IDENTIFIABILITY AND ERROR MINIMIZATION IN ESTIMATION OF RECEPTOR MODEL PARAMETERS WITH PET
    DELFORGE, J
    SYROTA, A
    MAZOYER, BM
    POSITRON EMISSION TOMOGRAPHY IN CLINICAL RESEARCH AND CLINICAL DIAGNOSIS: TRACER MODELLING AND RADIORECEPTORS, 1989, 15 : 45 - 64
  • [29] Correcting for Omitted-Variable and Measurement-Error Bias in Autoregressive Model Estimation with Panel Data
    P. A.V. B. Swamy
    I-Lok Chang
    Jatinder S. Mehta
    George S. Tavlas
    Computational Economics, 2003, 22 (2-3) : 225 - 253
  • [30] Hierarchically spatial autoregressive and moving average error model
    Ye, Qianting
    Liang, Huajie
    Lin, Kuan-Pin
    Long, Zhihe
    ECONOMIC MODELLING, 2019, 76 : 14 - 30