We present a new algorithm for the near-real time retrieval - within 3 h of the actual satellite measurement - of tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI). The retrieval is based on the combined retrieval-assimilation-modelling approach developed at KNMI for off-line tropospheric NO2 from the GOME and SCIAMACHY satellite instruments. We have adapted the off-line system such that the required a priori information profile shapes and stratospheric background NO2 - is now immediately available upon arrival ( within 80 min of observation) of the OMI NO2 slant columns and cloud data at KNMI. Slant columns for NO2 are retrieved using differential optical absorption spectroscopy (DOAS) in the 405 465 nm range. Cloud fraction and cloud pressure are provided by a new cloud retrieval algorithm that uses the absorption of the O-2-O-2 collision complex near 477 nm. Online availability of stratospheric slant columns and NO2 profiles is achieved by running the TM4 chemistry transport model (CTM) forward in time based on forecast ECMWF meteo and assimilated NO2 information from all previously observed orbits. OMI NO2 slant columns, after correction for spurious across-track variability, show a random error for individual pixels of approximately 0.7 x 10(15) molec cm(-2). Cloud parameters from OMI's O-2-O-2 algorithm have similar frequency distributions as retrieved from SCIAMACHY's Fast Retrieval Scheme for Cloud Observables ( FRESCO) for August 2006. On average, OMI cloud fractions are higher by 0.011, and OMI cloud pressures exceed FRESCO cloud pressures by 60 hPa. A sequence of OMI observations over Europe in October 2005 shows OMI's capability to track changeable NOx air pollution from day to day in cloud-free situations.
机构:
Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, NetherlandsHarvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Boersma, K. Folkert
Jacob, Daniel J.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USAHarvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Jacob, Daniel J.
Eskes, Henk J.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, NetherlandsHarvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Eskes, Henk J.
Pinder, Robert W.
论文数: 0引用数: 0
h-index: 0
机构:
NOAA, Air Resources Lab, Atmospher Sci Modeling Div, Res Triangle Pk, NC USA
US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USAHarvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Pinder, Robert W.
Wang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USAHarvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Wang, Jun
van der A, Ronald J.
论文数: 0引用数: 0
h-index: 0
机构:
Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, NetherlandsHarvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA