UPPAAL/DMC -: Abstraction-based heuristics for directed model checking

被引:0
|
作者
Kupferschmid, Sebastian [1 ]
Draeger, Klaus [2 ]
Hoffmann, Jorg [3 ]
Finkbeiner, Bernd [2 ]
Dierks, Henning [4 ]
Podelski, Andreas [1 ]
Behrmann, Gerd [5 ]
机构
[1] Univ Freiburg, Hugstetter Str 55, Freiburg, Germany
[2] Univ Saarland, Saarbrucken, Germany
[3] Digital Enterprise Res Inst, Innsbruck, Austria
[4] OFFIS, Oldenburg, Germany
[5] Aalborg Univ, Aalborg, Denmark
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
UPPAAL/DMC is an extension of UPPAAL which provides generic heuristics for directed model checking. In this approach, the traversal of the state space is guided by a heuristic function which estimates the distance of a search state to the nearest error state. Our tool combines two recent approaches to design such estimation functions. Both are based on computing an abstraction of the system and using the error distance in this abstraction as the heuristic value. The abstractions, and thus the heuristic functions, are generated fully automatically and do not need any additional user input. UPPAAL/DMC needs less time and memory to find shorter error paths than UPPAAL'S standard search methods.
引用
收藏
页码:679 / +
页数:2
相关论文
共 50 条
  • [21] An Abstraction-Based Framework for Neural Network Verification
    Elboher, Yizhak Yisrael
    Gottschlich, Justin
    Katz, Guy
    COMPUTER AIDED VERIFICATION (CAV 2020), PT I, 2020, 12224 : 43 - 65
  • [22] Towards Model Checking of Voting Protocols in UPPAAL
    Jamroga, Wojciech
    Kim, Yan
    Kurpiewski, Damian
    Ryan, Peter Y. A.
    ELECTRONIC VOTING, E-VOTE-ID 2020, 2020, 12455 : 129 - 146
  • [23] Abstraction-Based Synthesis of Controllers for Approximate Opacity
    Hou, Junyao
    Liu, Siyuan
    Yin, Xiang
    Zamani, Majid
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7930 - 7936
  • [24] Lazy Abstraction-Based Control for Safety Specifications
    Hsu, Kyle
    Majumdar, Rupak
    Mallik, Kaushik
    Schmuck, Anne-Kathrin
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4902 - 4907
  • [25] Theoretical foundations for abstraction-based probabilistic planning
    Ha, V
    Haddawy, P
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 1996, : 291 - 298
  • [26] Abstraction-Based Algorithm for 2QBF
    Janota, Mikolas
    Marques-Silva, Joao
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2011, 2011, 6695 : 230 - 244
  • [27] Trace Abstraction-Based Verification for Uninterpreted Programs
    Hong, Weijiang
    Chen, Zhenbang
    Du, Yide
    Wang, Ji
    FORMAL METHODS, FM 2021, 2021, 13047 : 545 - 562
  • [28] Towards Abstraction-based Probabilistic Program Analysis
    Szekeres, Daniel
    Majzik, Istvan
    ACTA CYBERNETICA, 2024, 26 (03): : 671 - 711
  • [29] Poster: Resilient Abstraction-Based Controller Design
    Samuel, Stanly
    Mallik, Kaushik
    Schmuck, Anne-Kathrin
    Neider, Daniel
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (HSCC2020) (PART OF CPS-IOT WEEK), 2020,
  • [30] Model Checking Mutual Exclusion Algorithms Using UPPAAL
    Cicirelli, Franco
    Nigro, Libero
    Sciammarella, Paolo F.
    SOFTWARE ENGINEERING PERSPECTIVES AND APPLICATION IN INTELLIGENT SYSTEMS, VOL 2, 2016, 465 : 203 - 215