Global optimization techniques for mixed complementarity problems

被引:33
|
作者
Kanzow, C [1 ]
机构
[1] Univ Hamburg, Inst Appl Math, D-20146 Hamburg, Germany
关键词
mixed complementarity problems; semismooth Newton method; global optimization; tunneling method; filled function method;
D O I
10.1023/A:1008331803982
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the theoretical and numerical properties of two global optimization techniques for the solution of mixed complementarity problems. More precisely, using a standard semismooth Newton-type method as a basic solver for complementarity problems, we describe how the performance of this method can be improved by incorporating two well-known global optimization algorithms, namely a tunneling and a filled function method. These methods are tested and compared with each other on a couple of very difficult test examples.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] Global optimization of mixed integer signomial fractional programing problems
    Nejad, Jaleh Shirin
    Saraj, Mansour
    Yancheshmeh, Sara Shokrolahi
    Harchegani, Fatemeh Kiany
    MEASUREMENT & CONTROL, 2024, 57 (08): : 1211 - 1217
  • [22] Extended Lorentz cones and mixed complementarity problems
    S. Z. Németh
    G. Zhang
    Journal of Global Optimization, 2015, 62 : 443 - 457
  • [23] A REGULARIZATION NEWTON METHOD FOR MIXED COMPLEMENTARITY PROBLEMS
    王宜举
    周厚春
    王长钰
    ActaMathematicaScientia, 2004, (03) : 376 - 384
  • [24] Feasible descent algorithms for mixed complementarity problems
    Michael C. Ferris
    Christian Kanzow
    Todd S. Munson
    Mathematical Programming, 1999, 86 : 475 - 497
  • [25] A regularization newton method for mixed complementarity problems
    Wang, YJ
    Zhou, HC
    Wang, CY
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (03) : 376 - 384
  • [26] Global solution of mixed-integer dynamic optimization problems
    Chachuat, B
    Singer, AB
    Barton, PI
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 133 - 138
  • [27] Feasible descent algorithms for mixed complementarity problems
    Ferris, MC
    Kanzow, C
    Munson, TS
    MATHEMATICAL PROGRAMMING, 1999, 86 (03) : 475 - 497
  • [28] Extended Lorentz cones and mixed complementarity problems
    Nemeth, S. Z.
    Zhang, G.
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (03) : 443 - 457
  • [29] Continuation Newton methods with deflation techniques for global optimization problems
    Luo, Xin-long
    Xiao, Hang
    Zhang, Sen
    NUMERICAL ALGORITHMS, 2024, 97 (04) : 1715 - 1790
  • [30] Coercive and Noncoercive Mixed Generalized Complementarity Problems
    Mohapatra, Ram N.
    Sahu, Bijaya K.
    Pany, Gayatri
    AXIOMS, 2024, 13 (05)